Abstract
In this study, we examined the regulation of autophagy by fish oil in rats under ethanol-containing diets. Thirty male Wistar rats (8-week-old) were divided into six groups and fed a control diet or an ethanol-containing diet, which was adjusted with fish oil to replace 25% or 57% of the olive oil. After 8 weeks, rats in the E (ethanol diet) group showed the significantly higher plasma aspartate transaminase (AST) and alanine transaminase (ALT) activities, protein expression of cytochrome P450 2E1 (CYP2E1), and levels of hepatic inflammatory cytokines. However, all of those items had significantly decreased in the EF25 (ethanol with 25% fish oil) and EF57 (ethanol with 57% fish oil) groups. As to autophagic indicators, protein expressions of mammalian target of rapamycin (mTOR), Unc-51-like autophagy activating kinase 1 (ULK1) and p62 were significantly increased in the E group. Conversely, the protein expressions of light chain 3II (LC3II)/LC3I and Beclin1 were significantly decreased in the E group. On the other hand, protein expressions of phosphorylated Akt, mTOR, ULK1, and p62 were down-regulated, protein expressions of LC3II/LC3I and Beclin1 were conversely up-regulated in the EF25 and EF57 groups. Fish oil activated hepatic autophagy via inhibiting the Akt signaling pathway, which exerted protective effects against ethanol-induced liver injury in rats.
Original language | English |
---|---|
Article number | 108314 |
Journal | Journal of Nutritional Biochemistry |
Volume | 77 |
DOIs | |
Publication status | Published - Mar 2020 |
Keywords
- Akt singalling pathway
- Alcoholic liver disease
- Autophagy
- Fish oil
- Wistar rats
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Biochemistry
- Molecular Biology
- Nutrition and Dietetics
- Clinical Biochemistry