Fisetin Protects Against Hepatic Steatosis Through Regulation of the Sirt1/AMPK and Fatty Acid β-Oxidation Signaling Pathway in High-Fat Diet-Induced Obese Mice

Chian Jiun Liou, Ciao Han Wei, Ya Ling Chen, Ching Yi Cheng, Chia Ling Wang, Wen Chung Huang

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)

Abstract

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.

Original languageEnglish
Pages (from-to)1870-1884
Number of pages15
JournalCellular Physiology and Biochemistry
Volume49
Issue number5
DOIs
Publication statusPublished - Oct 1 2018
Externally publishedYes

Keywords

  • AMPK • CPT-1 • Fisetin • FL83B • Lipolysis • Nonalcoholic fatty liver disease

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'Fisetin Protects Against Hepatic Steatosis Through Regulation of the Sirt1/AMPK and Fatty Acid β-Oxidation Signaling Pathway in High-Fat Diet-Induced Obese Mice'. Together they form a unique fingerprint.

Cite this