Abstract
We have demonstrated two novel donor–acceptor–donor (D–A–D) hole-transport material (HTM) with spiro[fluorene-9,9′-phenanthren-10′-one] as the core structure, which can be synthesized through a low-cost process in high yield. Compared to the incorporation of the conventional HTM of commonly used 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD), the synthesis process is greatly simplified for the presented D–A–D materials, including a minimum number of purification processes. This results in an increased production yield (>55 %) and suppressed production cost (<30 $ g−1), in addition to high power conversion efficiency (PCE) in perovskite solar cells (PSCs). The PCE of a PSC using our D–A–D HTM reaches 16.06 %, similar to that of Spiro-OMeTAD (16.08 %), which is attributed to comparable hole mobility and charge-transfer efficiency. D–A–D HTMs also provide better moisture resistivity to prolong the lifetime of PSCs under ambient conditions relative to their Spiro-OMeTAD counterparts. The proposed new type of D–A–D HTM has shown promising performance as an alternative HTM for PSCs and can be synthesized with high production throughput.
Original language | English |
---|---|
Pages (from-to) | 3225-3233 |
Number of pages | 9 |
Journal | ChemSusChem |
Volume | 11 |
Issue number | 18 |
DOIs | |
Publication status | Published - Sept 21 2018 |
Keywords
- donor–acceptor
- hole-transport material
- perovskite
- solar cells
- stability
ASJC Scopus subject areas
- Environmental Chemistry
- General Chemical Engineering
- General Materials Science
- General Energy