Evaluation of polyvinyl alcohol/cobalt substituted hydroxyapatite nanocomposite as a potential wound dressing for diabetic foot ulcers

Wei Chun Lin, Cheng Ming Tang

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


Diabetic foot ulcers (DFUs) caused by diabetes are prone to serious and persistent infections. If not treated properly, it will cause tissue necrosis or septicemia due to peripheral blood vessel embolism. Therefore, it is an urgent challenge to accelerate wound healing and reduce the risk of bacterial infection in patients. In clinical practice, DFUs mostly use hydrogel dressing to cover the surface of the affected area as an auxiliary treatment. Polyvinyl alcohol (PVA) is a hydrophilic hydrogel polymer widely used in dressings, drug delivery, and medical applications. However, due to its weak bioactivity and antibacterial ability, leads to limited application. Filler adding is a useful way to enhance the biocompatibility of PVA. In our study, cobalt-substituted hydroxyapatite (CoHA) powder was prepared by the electrochemically-deposited method. PVA and PVA-CoHA nanocomposite were prepared by the solvent casting method. The bioactivity of the PVA and composite was evaluated by immersed in simulated body fluid for 7 days. In addition, L929 cells and E. coli were used to evaluate the cytotoxicity and antibacterial tests of PVA and PVA-CoHA nanocomposite. The results show that the addition of CoHA increases the mechanical properties and biological activity of PVA. Biocompatibility evaluation showed no significant cytotoxicity of PVA-CoHA composite. In addition, a small amount of cobalt ion was released to the culture medium from the nanocomposite in the cell culture period and enhanced cell growth. The addition of CoHA also confirmed that it could inhibit the growth of E. coli. PVA-CoHA composite may have potential applications in diabetic trauma healing and wound dressing.

Original languageEnglish
Article number8831
Pages (from-to)1-15
Number of pages15
JournalInternational journal of molecular sciences
Issue number22
Publication statusPublished - Nov 2 2020


  • Antibacterial ability
  • Cobalt-substituted hydroxyapatite
  • Diabetic foot ulcers
  • Hydrogels
  • Polyvinyl alcohol

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Evaluation of polyvinyl alcohol/cobalt substituted hydroxyapatite nanocomposite as a potential wound dressing for diabetic foot ulcers'. Together they form a unique fingerprint.

Cite this