TY - JOUR
T1 - Evaluation of Gram-negative bacterial infection by a stable and conjugative bioluminescence plasmid in a mouse model
AU - Huang, Yao Kuang
AU - Chu, Chishih
AU - Wu, Chih Hsiung
AU - Chen, Chyi Liang
AU - Chiu, Cheng Hsun
N1 - Funding Information:
The authors thank Pei-Chun Tu and Hsin-Ju Chang, Chang Gung Memorial Hospital for their assistance in bacterial conjugation test and the IVIS detection in mice. This study was supported by grants from Chang Gung Memorial Hospital, Taoyuan, Taiwan (CMRPG381051-2, CMRPG390701-2, CMRPG6C0341, CMRPG6B0501, CMRPG490141-3 and CMRPG3A1111-3).
PY - 2014
Y1 - 2014
N2 - BACKGROUND: The green fluorescence protein (GFP)-associated fluorescence method and the luciferase-associated bioluminescence method are the two major methods for IVIS imaging system to investigate the bacterial infection in animal models. The aim of this study was to evaluate the infection route of Gram-negative bacteria carrying a stable and broad range of conjugative bioluminescence plasmid pSE-Lux1 in a mouse model.RESULTS: Both encapsulated and non-encapsulated Gram-negative bacteria were used as hosts to evaluate conjugation efficiency and plasmid stability of pSE-Lux1, a recombinant of pSE34 and luxABCDE operon. The plasmid conjugation efficiencies of pSE-Lux1 ranged from 10⁻³ to 10⁻⁷ in various Gram-negative bacteria. Plasmid pSE-Lux1 maintained in Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars Choleraesues (abbreviated S. Choleraesuis) and Typhimurium (S. Typhimurium), than in Acinetobacter baumannii and Serratia marcescens, was shown to be of better stability for at least four days. To investigate systemic bacterial infections, K. pneumoniae strain CG354 was intravenously injected, and then was clearly observed to be non-pathogenic to Balb/c mice for a long-term bioluminescence monitoring for 6 days. For examining dynamic distributions of gastrointestinal tract infection, the invasion protein SipB-deficient mutant OU5045△sipB and OU5046△sipB of S. serovar Typhimurium constructed in this study, compared to wild-type strain OU5045 and its virulence plasmid-less strain OU5046, were of less virulence to mice.CONCLUSIONS: This is the first study to evaluate the conjugative and stable bioluminescence vehicle system of pSE-Lux1 in a wide range of Gram-negative bacteria, a system that can provide a useful reporter approach to trace systemic and gastrointestinal bacterial infections in a mouse model.
AB - BACKGROUND: The green fluorescence protein (GFP)-associated fluorescence method and the luciferase-associated bioluminescence method are the two major methods for IVIS imaging system to investigate the bacterial infection in animal models. The aim of this study was to evaluate the infection route of Gram-negative bacteria carrying a stable and broad range of conjugative bioluminescence plasmid pSE-Lux1 in a mouse model.RESULTS: Both encapsulated and non-encapsulated Gram-negative bacteria were used as hosts to evaluate conjugation efficiency and plasmid stability of pSE-Lux1, a recombinant of pSE34 and luxABCDE operon. The plasmid conjugation efficiencies of pSE-Lux1 ranged from 10⁻³ to 10⁻⁷ in various Gram-negative bacteria. Plasmid pSE-Lux1 maintained in Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars Choleraesues (abbreviated S. Choleraesuis) and Typhimurium (S. Typhimurium), than in Acinetobacter baumannii and Serratia marcescens, was shown to be of better stability for at least four days. To investigate systemic bacterial infections, K. pneumoniae strain CG354 was intravenously injected, and then was clearly observed to be non-pathogenic to Balb/c mice for a long-term bioluminescence monitoring for 6 days. For examining dynamic distributions of gastrointestinal tract infection, the invasion protein SipB-deficient mutant OU5045△sipB and OU5046△sipB of S. serovar Typhimurium constructed in this study, compared to wild-type strain OU5045 and its virulence plasmid-less strain OU5046, were of less virulence to mice.CONCLUSIONS: This is the first study to evaluate the conjugative and stable bioluminescence vehicle system of pSE-Lux1 in a wide range of Gram-negative bacteria, a system that can provide a useful reporter approach to trace systemic and gastrointestinal bacterial infections in a mouse model.
UR - http://www.scopus.com/inward/record.url?scp=84925883463&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925883463&partnerID=8YFLogxK
U2 - 10.1186/s12929-014-0078-y
DO - 10.1186/s12929-014-0078-y
M3 - Article
C2 - 25135473
AN - SCOPUS:84925883463
SN - 1021-7770
VL - 21
SP - 78
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
ER -