Abstract
Objective: Oral squamous cell carcinoma (OSCC) constitutes almost 90% of head and neck malignancies and has a poor prognosis. To improve the efficacy of OSCC therapy, it is of great significance to explore other therapy for OSCC. Endothelin-1 (ET-1), a potent vaso-constrictor peptide, is implicated in cancer pathogenesis. Moreover, ET-1 promotes epithe-lial-mesenchymal transition (EMT) during the development of human cancers. We further to found that ET-1 exposure induced EMT in human squamous cell carcinoma cell lines SCC4 and SAS, by enhancing the expression of EMT biomarkers N-cadherin and vimentin and reducing E-cadherin expression via upregulation of the transcription factor TWIST. Materials and Methods: Cell motility was examined by migration, invasion and wound-healing assays. Quantitative real time polymerase chain reaction (q-PCR), and promoter assays confirmed the inhibitory effects of ET-1 on miRNAs expression in oral cancer cells. We demonstrate an intravenous injection model of lung metastasis followed by an advanced method for quantifying metastatic tumor using image analysis software. Results: In addition, ET-1/ETAR reduced levels of microRNA-489-3p (miR-489-3p), a transcriptional repressor of TWIST. We have identified a novel bypass mechanism through which ET-1/ETAR are involved in TWIST signaling and downregulate miR-489-3p expression, enabling OSCC cells to acquire the EMT phenotype. Notably, ET-1 knockdown dramatically decreased levels of EMT markers and cell migration potential. Conclusion: The role of ET-1 in OSCC progression is supported by our findings from an in vivo murine model of OSCC. ET-1 may therefore represent a novel molecular therapeutic target in OSCC metastasis.
Original language | English |
---|---|
Pages (from-to) | 5005-5018 |
Number of pages | 14 |
Journal | OncoTargets and Therapy |
Volume | 14 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Endothelin-1
- Epithelial–mesenchymal transition
- MicroRNA-489-3p
- Oral squamous cell carcinoma
- TWIST
ASJC Scopus subject areas
- Oncology
- Pharmacology (medical)