TY - JOUR
T1 - Epinecidin-1 protects mice from LPS-induced endotoxemia and cecal ligation and puncture-induced polymicrobial sepsis
AU - Su, Bor Chyuan
AU - Huang, Han Ning
AU - Lin, Tai Wen
AU - Hsiao, Chwan Deng
AU - Chen, Jyh Yih
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - The antimicrobial peptide, epinecidin-1 (Epi), was identified from Epinephelus coioides and may have clinical application for treating sepsis. Epi has been shown to ameliorate antibiotic-resistant bacteria-induced sepsis in mice, but further evaluation in mixed-flora models and a description of the protective mechanisms are essential to establish this peptide as a potential therapeutic. Therefore, we first tested the protective effects of Epi against polymicrobial sepsis-induced bactericidal infection, inflammation and lung injury that result from cecal ligation and puncture in mice. Furthermore, since lipopolysaccharide (LPS) is a key inducer of inflammation during bacterial infection and sepsis, we also tested the LPS-antagonizing activity and related mechanisms of Epi-mediated protection in mice with LPS-induced endotoxemia and LPS-treated Raw264.7 mouse macrophage cells. Epi rescued mice from both polymicrobial sepsis and endotoxemia after delayed administration and suppressed both lung and systemic inflammatory responses, while attenuating lung injury and diminishing bacterial load. In vitro studies revealed that Epi suppressed LPS-induced inflammatory cytokine production. Mechanistically, Epi disrupted the interaction between LPS and LPS binding protein, competed with LPS for binding on the cell surface, and inhibited Toll-like receptor 4 endocytosis, resulting in inhibition of LPS-induced reactive oxygen species/p38/Akt/NF-κB signaling and subsequent cytokine production. Overall, our results demonstrate that Epi is a promising therapeutic agent for endotoxemia and polymicrobial sepsis.
AB - The antimicrobial peptide, epinecidin-1 (Epi), was identified from Epinephelus coioides and may have clinical application for treating sepsis. Epi has been shown to ameliorate antibiotic-resistant bacteria-induced sepsis in mice, but further evaluation in mixed-flora models and a description of the protective mechanisms are essential to establish this peptide as a potential therapeutic. Therefore, we first tested the protective effects of Epi against polymicrobial sepsis-induced bactericidal infection, inflammation and lung injury that result from cecal ligation and puncture in mice. Furthermore, since lipopolysaccharide (LPS) is a key inducer of inflammation during bacterial infection and sepsis, we also tested the LPS-antagonizing activity and related mechanisms of Epi-mediated protection in mice with LPS-induced endotoxemia and LPS-treated Raw264.7 mouse macrophage cells. Epi rescued mice from both polymicrobial sepsis and endotoxemia after delayed administration and suppressed both lung and systemic inflammatory responses, while attenuating lung injury and diminishing bacterial load. In vitro studies revealed that Epi suppressed LPS-induced inflammatory cytokine production. Mechanistically, Epi disrupted the interaction between LPS and LPS binding protein, competed with LPS for binding on the cell surface, and inhibited Toll-like receptor 4 endocytosis, resulting in inhibition of LPS-induced reactive oxygen species/p38/Akt/NF-κB signaling and subsequent cytokine production. Overall, our results demonstrate that Epi is a promising therapeutic agent for endotoxemia and polymicrobial sepsis.
KW - Endotoxemia
KW - Epinecidin-1
KW - LPS
KW - LPS binding protein
KW - Macrophage
KW - Sepsis
UR - http://www.scopus.com/inward/record.url?scp=85036538386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85036538386&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2017.08.032
DO - 10.1016/j.bbadis.2017.08.032
M3 - Article
C2 - 28882626
AN - SCOPUS:85036538386
SN - 0925-4439
VL - 1863
SP - 3028
EP - 3037
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 12
ER -