TY - JOUR
T1 - Epigeneitc silencing of ribosomal RNA genes by Mybbp1a
AU - Tan, Bertrand Chin Ming
AU - Yang, Chang Ching
AU - Hsieh, Chia Ling
AU - Chou, Yin Hsiang
AU - Zhong, Chang Zheng
AU - Yung, Benjamin Yat Ming
AU - Liu, Hsuan
N1 - Funding Information:
This work was supported by grants from the Hong Kong Polytechnic University (#1-BD03, #G-U702, and #G-U915 to B.Y.-M.Y.), the National Science Council of Taiwan (NSC99-2632-B-182-001-MY3 and NSC100-2320-B-182-022 to B.C.-M.T. and NSC98-2312-B-182-001-MY3 to H.L.), Chang Gung Memorial Hospital (CMRPD1A0321 to B.C.-M.T. and CMRPD160364 to B.Y.-M.Y.), National Health Research Institute of Taiwan (NHRI-EX100-9923SC to B.C.-M.T.), and Ministry of Education, Taiwan.
PY - 2012
Y1 - 2012
N2 - Background: Transcription of the ribosomal RNA gene repeats by Pol I occurs in the nucleolus and is a fundamental step in ribosome biogenesis and protein translation. Due to tight coordination between ribosome biogenesis and cell proliferation, transcription of rRNA and stable maintenance of rDNA clusters are thought to be under intricate control by intercalated mechanisms, particularly at the epigenetic level. Methods and Results: Here we identify the nucleolar protein Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of rRNA expression. Suppression of rDNA transcription by Mybbp1a was linked to promoter regulation as illustrated by its binding to the chromatin around the hypermethylated, inactive rDNA gene promoters. Our data further showed that downregulation of Mybbp1a abrogated the local DNA methylation levels and histone marks associated with gene silencing, and altered the promoter occupancy of various factors such UBF and HDACs, consequently leading to elevated rRNA expression. Mechanistically, we propose that Mybbp1a maintains rDNA repeats in a silenced state while in association with the negative epigenetic modifiers HDAC1/2. Conclusions: Results from our present work reveal a previously unrecognized co-repressor role of Mybbp1a in rRNA expression. They are further consistent with the scenario that Mybbp1a is an integral constituent of the rDNA epigenetic regulation that underlies the balanced state of rDNA clusters.
AB - Background: Transcription of the ribosomal RNA gene repeats by Pol I occurs in the nucleolus and is a fundamental step in ribosome biogenesis and protein translation. Due to tight coordination between ribosome biogenesis and cell proliferation, transcription of rRNA and stable maintenance of rDNA clusters are thought to be under intricate control by intercalated mechanisms, particularly at the epigenetic level. Methods and Results: Here we identify the nucleolar protein Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of rRNA expression. Suppression of rDNA transcription by Mybbp1a was linked to promoter regulation as illustrated by its binding to the chromatin around the hypermethylated, inactive rDNA gene promoters. Our data further showed that downregulation of Mybbp1a abrogated the local DNA methylation levels and histone marks associated with gene silencing, and altered the promoter occupancy of various factors such UBF and HDACs, consequently leading to elevated rRNA expression. Mechanistically, we propose that Mybbp1a maintains rDNA repeats in a silenced state while in association with the negative epigenetic modifiers HDAC1/2. Conclusions: Results from our present work reveal a previously unrecognized co-repressor role of Mybbp1a in rRNA expression. They are further consistent with the scenario that Mybbp1a is an integral constituent of the rDNA epigenetic regulation that underlies the balanced state of rDNA clusters.
UR - http://www.scopus.com/inward/record.url?scp=84861990339&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861990339&partnerID=8YFLogxK
U2 - 10.1186/1423-0127-19-57
DO - 10.1186/1423-0127-19-57
M3 - Article
C2 - 22686419
AN - SCOPUS:84861990339
SN - 1021-7770
VL - 19
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
IS - 1
M1 - 57
ER -