Abstract
Epidermal growth factor receptor (EGFR) activation is a major cause of metastasis in such cancers as head and neck squamous cell carcinoma (HNSCC); however, whether the metabolic enzyme, pyruvate dehydrogenase kinase 1 (PDK1), mediates EGF-enhanced HNSCC metastasis remains unclear. Of interest, we found that EGF induced PDK1 expression in HNSCC. Tumor cell transformation induced by EGF was repressed by PDK1 knockdown, and the down-regulation of PDK1 expression or inhibition of its activity significantly blocked EGF-enhanced cell migration and invasion. In addition, depletion of PDK1 impeded EGF-enhanced binding of HNSCC cells to endothelial cells as well as the metastatic seeding of tumor cells in lungs. PDK1 depletion inhibited EGF-induced matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-3, MMP-9, and fibronectin expression and Rac1/cdc42 activation. Furthermore, PDK1 overexpression induced MMP-1, MMP-2, MMP-3, MMP-9, and fibronectin expression and Rac1/cdc42 activation. Of interest, depletion of fibronectin inhibited PDK1-enhanced MMP-1–3 and MMP-9 expression as well as Rac1/cdc42 activation and tumor invasion. These results demonstrate that EGF-induced PDK1 expression enhances HNSCC metastasis via activation of the fibronectin signaling pathway. Inhibition of PDK1 may be a potential strategy for the treatment of EGFR-mediated HNSCC metastasis.
Original language | English |
---|---|
Pages (from-to) | 4265-4276 |
Number of pages | 12 |
Journal | FASEB Journal |
Volume | 31 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2017 |
Keywords
- EGF
- HNSCC
- MMP
- PDK1
ASJC Scopus subject areas
- Biotechnology
- Biochemistry
- Molecular Biology
- Genetics