Abstract
Long-term exposure to intermittent hypoxia (IH), such as that occurring in association with sleep apnea, may result in systemic hypertension; however, the time course changes in arterial pressure, autonomic functions, and barore-flex sensitivity are still unclear. We investigated the changes in cardiovascular neural regulations during the development of chronic IH-induced hypertension in rats. Sprague-Dawley rats were exposed to repetitive 1.25-min cycles (30 s of N2 + 45 s of 21% O2) of IH or room air (RA) for 6 h/day during light phase (10 AM-4 PM) for 30 days. Arterial pressure was measured daily using the telemetry system during RA breathing. The mean arterial pressure (MAP) and interpulse interval (PPI) signals were then used to assess the autonomic functions and spontaneous baroreflex sensitivity by auto- and cross-spectral analysis, respectively. Stable MAP, low-frequency power of MAP (BLF), and low-frequency power (LF)-to-high frequency power (HF) ratio of PPI (LF/HF) were significantly higher in IH-exposed rats, compared with those of RA-exposed rats. Elevation of the MAP, BLF, LF/HF, and minute ventilation started 5 days after IH exposure and lasted until the end of the 30-day observation period. Additionally, IH-exposed rats had significant lower slope of MAP-PPI linear regression (under a successively descending and ascending) and magnitude of MAP-PPI transfer function (at frequency ranges of 0.06-0.6 Hz or 0.6-2.4 Hz) after IH exposure for 17 days. However, RA-exposed rats did not exhibit these changes. The results of this study indicate that chronic IH-induced hypertension is associated with a facilitation of cardiovascular sympathetic outflow and inhibition of baroreflex sensitivity in conscious rats.
Original language | English |
---|---|
Pages (from-to) | 1974-1982 |
Number of pages | 9 |
Journal | Journal of Applied Physiology |
Volume | 100 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2006 |
Externally published | Yes |
Keywords
- Autonomic functions
- Peripheral chemoreflex sensitivity
- Spontaneous baroreflex sensitivity
ASJC Scopus subject areas
- Physiology
- Endocrinology
- Orthopedics and Sports Medicine
- Physical Therapy, Sports Therapy and Rehabilitation