Energy restriction-mimetic agents induce apoptosis in prostate cancer cells in part through epigenetic activation of KLF6 tumor suppressor gene expression

Chun-Han Chen, Po Hsien Huang, Po Chen Chu, Mei Chuan Chen, Chih Chien Chou, Dasheng Wang, Samuel K. Kulp, Che Ming Teng, Qianben Wang, Ching Shih Chen

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


Although energy restriction has been recognized as an important target for cancer prevention, the mechanism by which energy restriction-mimetic agents (ERMAs) mediate apoptosis remains unclear. By using a novel thiazolidinedione- derived ERMA, CG-12 (Wei, S., Kulp, S. K., and Chen, C. S. (2010) J. Biol. Chem. 285, 9780-9791), vis-à-vis 2-deoxyglucose and glucose deprivation, we obtain evidence that epigenetic activation of the tumor suppressor gene Kruppel-like factor 6 (KLF6) plays a role in ERMA-induced apoptosis in LNCaP prostate cancer cells. KLF6 regulates the expression of many proapoptotic genes, and shRNA-mediated KLF6 knockdown abrogated the ability of ERMAs to induce apoptosis. Chromatin immunoprecipitation analysis indicates that this KLF6 transcriptional activation was associated with increased histone H3 acetylation and histoneH3 lysine 4 trimethylation occupancy at the promoter region. Several lines of evidence demonstrate that the enhancing effect of ERMAs on these active histone marks was mediated through transcriptional repression of histone deacetylases and H3 lysine 4 demethylases by down-regulating Sp1 expression. First, putative Sp1-binding elements are present in the promoters of the affected histone-modifying enzymes, and luciferase reporter assays indicate that site-directed mutagenesis of these Sp1 binding sites significantly diminished the promoter activities. Second, shRNA-mediated knockdown of Sp1 mimicked the repressive effect of energy restriction on these histone-modifying enzymes. Third, ectopic Sp1 expression protected cells from the repressive effect of CG-12 on these histone-modifying enzymes, thereby abolishing the activation of KLF6 expression. Together, these findings underscore the intricate relationship between energy restriction and epigenetic regulation of tumor suppressor gene expression, which has therapeutic relevance to foster novel strategies for prostate cancer therapy.

Original languageEnglish
Pages (from-to)9968-9976
Number of pages9
JournalJournal of Biological Chemistry
Issue number12
Publication statusPublished - Mar 25 2011
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Energy restriction-mimetic agents induce apoptosis in prostate cancer cells in part through epigenetic activation of KLF6 tumor suppressor gene expression'. Together they form a unique fingerprint.

Cite this