TY - JOUR
T1 - Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction
AU - Huang, Chen Tsung
AU - Huang, Duen Yi
AU - Hu, Chaur Jong
AU - Wu, Dean
AU - Lin, Wan-Wan
N1 - Funding Information:
This work was supported by grants from the National Science Council ( NSC 100-2320-B-002-088 ) and Taipei Medical University–Shuang Ho Hospital ( 102TMU-SHH-08 ).
PY - 2014/3
Y1 - 2014/3
N2 - Parthanatos is a programmed necrotic demise characteristic of ATP (adenosine triphosphate) consumption due to NAD+ (nicotinamide adenine dinucleotide) depletion by poly(ADP-ribose) polymerase 1 (PARP1)-dependent poly(ADP-ribosyl)ation on target proteins. However, how the bioenergetics is adaptively regulated during parthanatos, especially under the condition of macroautophagy deficiency, remains poorly characterized. Here, we demonstrated that the parthanatic inducer N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggered ATP depletion followed by recovery in mouse embryonic fibroblasts (MEFs). Notably, Atg5-/- MEFs showed great susceptibility to MNNG with disabled ATP-producing capacity. Moreover, the differential energy-adaptive responses in wild-type (WT) and Atg5-/- MEFs were unequivocally worsened by inhibition of AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and mitochondrial activity. Importantly, Atg5-/- MEFs disclosed diminished SIRT1 and mitochondrial activity essential to the energy restoration during parthanatos. Strikingly, however, parthanatos cannot be exasperated by bafilomycin A1 and MNNG neither provokes microtubule-associated protein 1A/1B-light chain 3 (LC3) lipidation and p62 elimination, suggesting that parthanatos does not induce autophagic flux. Intriguingly, we reported unexpectedly that PD98059, even at low concentration insufficient to inhibit MEK, can promote mitochondrial activity and facilitate energy-restoring process during parthanatos, without modulating DNA damage responses as evidenced by PARP1 activity, p53 expression, and γH2AX (H2A histone family, member X (H2AX), phosphorylated on Serine 139) induction. Therefore, we propose that Atg5 deficiency confers an infirmity to overcome the energy crisis during parthanatos and further underscore the deficits in mitochondrial quality control, but not incapability of autophagy induction, that explain the vulnerability in Atg5-deficient cells. Collectively, our results provide a comprehensive energy perspective for an improved treatment to alleviate parthanatos-related tissue necrosis and disease progression and also provide a future direction for drug development on the basis of PD98059 as an efficacious compound against parthanatos.
AB - Parthanatos is a programmed necrotic demise characteristic of ATP (adenosine triphosphate) consumption due to NAD+ (nicotinamide adenine dinucleotide) depletion by poly(ADP-ribose) polymerase 1 (PARP1)-dependent poly(ADP-ribosyl)ation on target proteins. However, how the bioenergetics is adaptively regulated during parthanatos, especially under the condition of macroautophagy deficiency, remains poorly characterized. Here, we demonstrated that the parthanatic inducer N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggered ATP depletion followed by recovery in mouse embryonic fibroblasts (MEFs). Notably, Atg5-/- MEFs showed great susceptibility to MNNG with disabled ATP-producing capacity. Moreover, the differential energy-adaptive responses in wild-type (WT) and Atg5-/- MEFs were unequivocally worsened by inhibition of AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and mitochondrial activity. Importantly, Atg5-/- MEFs disclosed diminished SIRT1 and mitochondrial activity essential to the energy restoration during parthanatos. Strikingly, however, parthanatos cannot be exasperated by bafilomycin A1 and MNNG neither provokes microtubule-associated protein 1A/1B-light chain 3 (LC3) lipidation and p62 elimination, suggesting that parthanatos does not induce autophagic flux. Intriguingly, we reported unexpectedly that PD98059, even at low concentration insufficient to inhibit MEK, can promote mitochondrial activity and facilitate energy-restoring process during parthanatos, without modulating DNA damage responses as evidenced by PARP1 activity, p53 expression, and γH2AX (H2A histone family, member X (H2AX), phosphorylated on Serine 139) induction. Therefore, we propose that Atg5 deficiency confers an infirmity to overcome the energy crisis during parthanatos and further underscore the deficits in mitochondrial quality control, but not incapability of autophagy induction, that explain the vulnerability in Atg5-deficient cells. Collectively, our results provide a comprehensive energy perspective for an improved treatment to alleviate parthanatos-related tissue necrosis and disease progression and also provide a future direction for drug development on the basis of PD98059 as an efficacious compound against parthanatos.
KW - AMPK
KW - ATP consumption
KW - Mitochondrion
KW - PD98059
KW - Parthanatos
KW - SIRT1
UR - http://www.scopus.com/inward/record.url?scp=84891698878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891698878&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2013.12.001
DO - 10.1016/j.bbamcr.2013.12.001
M3 - Article
C2 - 24321770
AN - SCOPUS:84891698878
SN - 0167-4889
VL - 1843
SP - 531
EP - 543
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 3
ER -