Abstract
TDP-43 is a multifunctional DNA/RNA-binding factor that has been implicated in the regulation of neuronal plasticity. TDP-43 has also been identified as the major constituent of the neuronal cytoplasmic inclusions (NCIs) that are characteristic of a range of neurodegenerative diseases, including the frontotemporal lobar degeneration with ubiquitin+ inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). We have generated a FTLD-U mouse model (CaMKII-TDP-43 Tg) in which TDP-43 is transgenically overexpressed in the forebrain resulting in phenotypic characteristics mimicking those of FTLD-U. In particular, the transgenic (Tg) mice exhibit impaired learning/memory, progressive motor dysfunction, and hippocampal atrophy. The cognitive and motor impairments are accompanied by reduced levels of the neuronal regulators phospho-extracellular signal-regulated kinase and phosphorylated cAMP response element-binding protein and increased levels of gliosis in the brains of the Tg mice. Moreover, cells with TDP-43+, ubiquitin+ NCIs and TDP-43-deleted nuclei appear in the Tg mouse brains in an age-dependent manner. Our data provide direct evidence that increased levels of TDP-43 protein in the forebrain is sufficient to lead to the formation of TDP-43+, ubiquitin+ NCIs and neurodegeneration. This FTLD-U mouse model should be valuable for the mechanistic analysis of the role of TDP-43 in the pathogenesis of FTLD-U and for the design of effective therapeutic approaches of the disease.
Original language | English |
---|---|
Pages (from-to) | 1661-1673 |
Number of pages | 13 |
Journal | Journal of Experimental Medicine |
Volume | 207 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Immunology and Allergy
- Immunology