Effects of phosphodiesterase-1 inhibitor on pulmonary vein electrophysiology and arrhythmogenesis

Dony Yugo, Yao Chang Chen, Yung Kuo Lin, Chih Min Liu, Jen Hung Huang, Shih Ann Chen, Yi Jen Chen

Research output: Contribution to journalArticlepeer-review


Introduction: Phosphodiesterase (PDE) isoform inhibitors have mechanical and electrical effects on the heart. Inhibition of PDE-1 enzymes is a novel strategy for treating heart failure. However, the electrophysiological effects of PDE-1 inhibition on the heart remain unclear. This study explored the effects of PDE-1 inhibition using ITI-214 on electrical activity in the pulmonary vein (PV), the most common trigger of atrial fibrillation, and investigated the underlying ionic mechanisms. Methods: Conventional microelectrodes or whole-cell patch clamps were employed to study the effects of ITI-214 (0.1-10 μM) on PV electrical activity, mechanical responses and ionic currents in isolated rabbit PV tissue specimens and isolated single PV cardiomyocytes. Results: ITI-214 at 1 μM and 10 μM (but not 0.1 μM) significantly reduced PV spontaneous beating rate (10 ± 2% and 10 ± 3%, respectively) and PV diastolic tension (11 ± 3% and 17 ± 3%, respectively). ITI-24 (1 μM) significantly reduced late sodium current (INa-Late), L-type calcium current (ICa-L) and the reverse mode of the sodium-calcium exchanger (NCX), but it did not affect peak sodium currents. Conclusions: ITI-214 reduces PV spontaneous activity and PV diastolic tension by reducing INa-Late, ICa-L and NCX current. Considering its therapeutic potential in heart failure, targeting PDE-1 inhibition may provide a novel strategy for managing atrial arrhythmogenesis.

Original languageEnglish
Article numbere13585
JournalEuropean Journal of Clinical Investigation
Issue number9
Publication statusPublished - May 2021


  • atrial fibrillation
  • ionic current
  • phosphodiesterase
  • pulmonary vein

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Biochemistry


Dive into the research topics of 'Effects of phosphodiesterase-1 inhibitor on pulmonary vein electrophysiology and arrhythmogenesis'. Together they form a unique fingerprint.

Cite this