Abstract
Introduction: Phosphodiesterase (PDE) isoform inhibitors have mechanical and electrical effects on the heart. Inhibition of PDE-1 enzymes is a novel strategy for treating heart failure. However, the electrophysiological effects of PDE-1 inhibition on the heart remain unclear. This study explored the effects of PDE-1 inhibition using ITI-214 on electrical activity in the pulmonary vein (PV), the most common trigger of atrial fibrillation, and investigated the underlying ionic mechanisms. Methods: Conventional microelectrodes or whole-cell patch clamps were employed to study the effects of ITI-214 (0.1-10 μM) on PV electrical activity, mechanical responses and ionic currents in isolated rabbit PV tissue specimens and isolated single PV cardiomyocytes. Results: ITI-214 at 1 μM and 10 μM (but not 0.1 μM) significantly reduced PV spontaneous beating rate (10 ± 2% and 10 ± 3%, respectively) and PV diastolic tension (11 ± 3% and 17 ± 3%, respectively). ITI-24 (1 μM) significantly reduced late sodium current (INa-Late), L-type calcium current (ICa-L) and the reverse mode of the sodium-calcium exchanger (NCX), but it did not affect peak sodium currents. Conclusions: ITI-214 reduces PV spontaneous activity and PV diastolic tension by reducing INa-Late, ICa-L and NCX current. Considering its therapeutic potential in heart failure, targeting PDE-1 inhibition may provide a novel strategy for managing atrial arrhythmogenesis.
Original language | English |
---|---|
Article number | e13585 |
Journal | European Journal of Clinical Investigation |
Volume | 51 |
Issue number | 9 |
DOIs | |
Publication status | Published - May 2021 |
Keywords
- atrial fibrillation
- ionic current
- phosphodiesterase
- pulmonary vein
ASJC Scopus subject areas
- Biochemistry
- Clinical Biochemistry