Effects of Low Intensity Pulsed Ultrasound on Rat Schwann Cells Metabolism

Yang Hwei Tsuang, Li Wen Liao, Yuan Hung Chao, Jui Sheng Sun, Cheng Kung Cheng, Ming Hong Chen, Pei Wei Weng

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)


The effects of low intensity pulsed ultrasound to tenocytes and osteocytes are well understood and applied clinically. However, its effects on cultured Schwann cells are still not well elucidated. This study was designed to elucidate the effects of low intensity pulsed ultrasound on cultured Schwann cells and their possible molecular mechanism. Schwann cells were harvested from sciatic nerves of 3-day-old Sprague-Dawley rats. Low intensity pulsed ultrasound stimulator (frequency: 1MHz, duration: 2min, duty cycle: 20%, total treatment time: 3min) was applied to three different culture conditions: regular culture medium containing 0, 5, or 10% fetal bovine serum. The viability, damage, and differentiation of Schwann cells were examined; gene expression was also analyzed. In the presence of 0.3W/cm2 pulsed ultrasound stimulation, increases in cell viability and decreases in cell apoptosis were observed in the serum deprivation group; in this culture condition, interleukin-1, tumor necrosis factor-alpha, and protein zero genes expression were downregulated and Desert Hedgehog transcripts gene expression was upregulated. We concluded that intervention with low intensity pulsed ultrasound could promote Schwann cell proliferation, prevent cell death, and keep adequate phenotype presentation for peripheral nerve recovery. The low intensity pulsed ultrasound stimulation to an injured nerve site could be applied as early as possible especially when the microenvironment is almost serum-free to obtain the most benefit.

Original languageEnglish
Pages (from-to)373-383
Number of pages11
JournalArtificial Organs
Issue number4
Publication statusPublished - Apr 2011


  • Gene expression
  • Low intensity pulsed ultrasound
  • Nerve regeneration
  • Schwann cells

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Effects of Low Intensity Pulsed Ultrasound on Rat Schwann Cells Metabolism'. Together they form a unique fingerprint.

Cite this