TY - JOUR
T1 - Effect of prednisolone on glyoxalase 1 in an inbred mouse model of aristolochic acid nephropathy using a proteomics method with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry
AU - Chen, Shih Ming
AU - Lin, Chia En
AU - Chen, Hung Hsiang
AU - Cheng, Yu Fan
AU - Cheng, Hui Wen
AU - Imai, Kazuhiro
N1 - Publisher Copyright:
© 2020 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Prednisolone is involved in glucose homeostasis and has been used for treatment for aristolochic acid (AA) nephropathy (AAN), but its effect on glycolysis in kidney has not yet been clarified. This study aims to investigate the effect in terms of altered proteins after prednisolone treatment in a mice model of AAN using a proteomics technique. The six-week C3H/He female mice were administrated AA (0.5 mg/kg/day) for 56 days. AA+P group mice were then given prednisolone (2 mg/kg/day) via oral gavage for the next 14 days, and AA group mice were fed water instead. The tubulointerstitial damage was improved after prednisolone treatment comparing to that of AA group. Kidney homogenates were harvested to perform the proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method (FD-LC-MS/MS). On the other hand, urinary methylglyoxal and D-lactate levels were determined by high performance liquid chromatography with fluorescence detection. There were 47 altered peaks and 39 corresponding proteins on day 14 among the groups, and the glycolysis-related proteins, especially glyoxalase 1 (GLO1), fructose-bisphosphate aldolase B (aldolase B), and triosephosphate isomerase (TPI), decreased in the AA+P group. Meanwhile, prednisolone decreased the urinary amount of methylglyoxal (AA+P: 2.004 ± 0.301 μg vs. AA: 2.741 ± 0.630 μg, p < 0.05), which was accompanied with decrease in urinary amount of D-lactate (AA+P: 54.07 ± 5.45 μmol vs. AA: 86.09 ± 8.44 μmol, p < 0.05). Prednisolone thus alleviated inflammation and interstitial renal fibrosis. The renal protective mechanism might be associated with down-regulation of GLO1 via reducing the contents of methylglyoxal derived from glycolysis. With the aid of proteomics analysis and the determination of methylglyoxal and its metabolite-D-lactate, we have demonstrated for the first time the biochemical efficacy of prednisolone, and urinary methylglyoxal and its metabolite-D-lactate might be potential biomarkers for AAN.
AB - Prednisolone is involved in glucose homeostasis and has been used for treatment for aristolochic acid (AA) nephropathy (AAN), but its effect on glycolysis in kidney has not yet been clarified. This study aims to investigate the effect in terms of altered proteins after prednisolone treatment in a mice model of AAN using a proteomics technique. The six-week C3H/He female mice were administrated AA (0.5 mg/kg/day) for 56 days. AA+P group mice were then given prednisolone (2 mg/kg/day) via oral gavage for the next 14 days, and AA group mice were fed water instead. The tubulointerstitial damage was improved after prednisolone treatment comparing to that of AA group. Kidney homogenates were harvested to perform the proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method (FD-LC-MS/MS). On the other hand, urinary methylglyoxal and D-lactate levels were determined by high performance liquid chromatography with fluorescence detection. There were 47 altered peaks and 39 corresponding proteins on day 14 among the groups, and the glycolysis-related proteins, especially glyoxalase 1 (GLO1), fructose-bisphosphate aldolase B (aldolase B), and triosephosphate isomerase (TPI), decreased in the AA+P group. Meanwhile, prednisolone decreased the urinary amount of methylglyoxal (AA+P: 2.004 ± 0.301 μg vs. AA: 2.741 ± 0.630 μg, p < 0.05), which was accompanied with decrease in urinary amount of D-lactate (AA+P: 54.07 ± 5.45 μmol vs. AA: 86.09 ± 8.44 μmol, p < 0.05). Prednisolone thus alleviated inflammation and interstitial renal fibrosis. The renal protective mechanism might be associated with down-regulation of GLO1 via reducing the contents of methylglyoxal derived from glycolysis. With the aid of proteomics analysis and the determination of methylglyoxal and its metabolite-D-lactate, we have demonstrated for the first time the biochemical efficacy of prednisolone, and urinary methylglyoxal and its metabolite-D-lactate might be potential biomarkers for AAN.
KW - Animals
KW - Aristolochic Acids/genetics
KW - Chromatography, High Pressure Liquid
KW - Disease Models, Animal
KW - Female
KW - Fibrosis/drug therapy
KW - Fructose-Bisphosphate Aldolase/genetics
KW - Humans
KW - Inflammation/drug therapy
KW - Kidney/metabolism
KW - Kidney Diseases/drug therapy
KW - Lactic Acid/urine
KW - Lactoylglutathione Lyase/genetics
KW - Mice
KW - Prednisolone/pharmacology
KW - Proteomics
KW - Pyruvaldehyde/urine
KW - Tandem Mass Spectrometry
KW - Triose-Phosphate Isomerase/genetics
UR - http://www.scopus.com/inward/record.url?scp=85078088991&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078088991&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0227838
DO - 10.1371/journal.pone.0227838
M3 - Article
C2 - 31968011
AN - SCOPUS:85078088991
SN - 1932-6203
VL - 15
SP - e0227838
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0227838
ER -