Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation

Yu Han Chin, Albert Lee, Hung Wei Kan, Jessica Laiman, Mei Chun Chuang, Sung Tsang Hsieh, Ya Wen Liu

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)


Skeletal muscle requires adequate membrane trafficking and remodeling to maintain its normal structure and functions. Consequently, many human myopathies are caused by mutations in membrane trafficking machinery. The large GTPase dynamin-2 (Dyn2) is best known for catalyzing membrane fission during clathrin-mediated endocytosis (CME), which is critical for cell signaling and survival. Despite its ubiquitous expression, mutations of Dyn2 are associated with two tissue-specific congenital disorders: centronuclear myopathy (CNM) and Charcot-Marie-Tooth (CMT) neuropathy. Several disease models for CNM-Dyn2 have been established to study its pathogenic mechanism; yet the cellular and biochemical effects of these mutations are still not fully understood. Here we comprehensively compared the biochemical activities of disease-associated Dyn2 mutations and found that CNM-Dyn2 mutants are hypermorphic with enhanced membrane fission activity, whereas CMT-Dyn2 is hypomorphic. More importantly, we found that the expression of CNM-Dyn2 mutants does not impair CME in myoblast, but leads to T-tubule fragmentation in both C2C12-derived myotubes and Drosophila body wall muscle. Our results demonstrate that CNM-Dyn2 mutants are gain-of-function mutations, and their primary effect in muscle is T-tubule disorganization, which explains the susceptibility of muscle to Dyn2 hyperactivity.

Original languageEnglish
Pages (from-to)5542-5554
Number of pages13
JournalHuman Molecular Genetics
Issue number19
Publication statusPublished - Oct 1 2015
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation'. Together they form a unique fingerprint.

Cite this