Dynamic Co(µ-O)2Ru Moiety Endowed Efficiently Catalytic Hydrogen Evolution

Ching Wei Tung, Tsung Rong Kuo, Yu Ping Huang, You Chiuan Chu, Cheng Hung Hou, Yanan Li, Nian Tzu Suen, Jie Han, Hao Ming Chen

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


A large number of highly active Ru-based electrocatalysts have been reported for the hydrogen evolution reaction (HER). The utilization of synergistic effects for promoting HER performance remains inadequate, especially for corresponding potential-driven reactive sites at the atomic level. Herein, a Co-substituted Ru-Ru2P structure is employed as a model system to reveal the synergistic effect on Ru-based electrocatalysts and to realize the potential-driven reactive sites during the HER. Optimized Ru-Ru2P @ Co0.6 exhibits a superior catalytic performance in alkaline electrolytes, achieving a low overpotential of 9 mV at a current density of 10 mA cm–2. To precisely describe the geometrical nature of surface moiety of Co(µ-O)2Ru, an indicator (β) is established to quantify the strain of Co(µ-O)2Ru moieties through calculating the L-Co-L (L = P or O) angles through employing in situ X-ray absorption spectroscopy. Both bond strain and corresponding metal-metal distance of Co-Ru in Co(µ-O)2Ru moiety can significantly affect the structural tolerance and facilitate the coupling of adsorbed hydrogen atoms during HER. It is believed that the perspective raised in the present work will provide a new avenue to the design of highly active HER catalysts at the atomic scale.

Original languageEnglish
Article number2200079
JournalAdvanced Energy Materials
Issue number28
Publication statusPublished - Jul 27 2022


  • hydrogen evolution reaction
  • in situ XAS
  • Ru

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science


Dive into the research topics of 'Dynamic Co(µ-O)2Ru Moiety Endowed Efficiently Catalytic Hydrogen Evolution'. Together they form a unique fingerprint.

Cite this