Abstract
Exome sequencing (exome-seq) has aided in the discovery of a huge amount of mutations in cancers, yet challenges remain in converting oncogenomics data into information that is interpretable and accessible for clinical care. We constructed DriverDB (http://ngs.ym.edu.tw/driverdb/), a database which incorporates 6079 cases of exome-seq data, annotation databases (such as dbSNP, 1000 Genome and Cosmic) and published bioinformatics algorithms dedicated to driver gene/mutation identification. We provide two points of view, 'Cancer' and 'Gene', to help researchers to visualize the relationships between cancers and driver genes/mutations. The 'Cancer' section summarizes the calculated results of driver genes by eight computational methods for a specific cancer type/dataset and provides three levels of biological interpretation for realization of the relationships between driver genes. The 'Gene' section is designed to visualize the mutation information of a driver gene in five different aspects. Moreover, a 'Meta-Analysis' function is provided so researchers may identify driver genes in customer-defined samples. The novel driver genes/mutations identified hold potential for both basic research and biotech applications.
Original language | English |
---|---|
Pages (from-to) | D1048-D1054 |
Journal | Nucleic Acids Research |
Volume | 42 |
Issue number | D1 |
DOIs | |
Publication status | Published - Jan 1 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Genetics