TY - JOUR
T1 - Dopaminergic D2 receptors activate PKA to inhibit spinal pelvic-urethra reflex in rats
AU - Wu, Hsi Chin
AU - Chiu, Chun Hsien
AU - Tung, Kwong Chung
AU - Chen, Gin Den
AU - Peng, Hsien Yu
AU - Lin, Tzer Bin
PY - 2010/9
Y1 - 2010/9
N2 - To clarify the role of descending dopaminergic innervation in reflexive urethral closure, the impacts of dopaminergic D2 receptor (DR2)-selective agonists and antagonists on repetitive stimulation-induced pelvic-to-urethra spinal reflex potentiation (SRP) were tested using in vivo rat preparations. Pelvic afferent nerve test stimulation (TS; 1 pulse/30 s for 30 min) evoked baseline reflex activity with single spikes in the external urethral sphincter electromyogram (EUSE), whereas, repetitive stimulation (RS; 1 pulse/s for 30 min) induced SRP. Intrathecal application of quinelorane dihydrochloride (Q110; 10, 30, and 100 nM, 10 μl, a selective DR2 agonist) dose dependently inhibited the RS-induced SRP. Pretreatment with L135 (100 nM, 10 μL it, a selective DR2 antagonist) antagonized the Q110-dependent inhibition (100 nM, 10 μl it). Intrathecal AMPA (10 μM, 10 μl, a selective glutamatergic AMPA receptor agonist), and NMDA (10 μM, 10 μl, a selective glutamatergic NMDA receptor agonist) reversed the Q110-dependent inhibition. Intrathecal forskolin (100 nM, 10 μl, a PKA activator) prevented the Q110-dependent inhibition that was reversed by CNQX (10 μM, 10 μl it, a selective glutamate AMPA receptor antagonist) and APV (10 μM, 10 μl it , a selective glutamate NMDA receptor antagonist). Our results suggest that DR2 activation, which inactivates intracellular PKA, may be involved in descending dopaminergic inhibition of NMDA/AMPA receptor-dependent SRP at the lumbosacral spinal cord, which is thought to be involved in reflexive urethral closure.
AB - To clarify the role of descending dopaminergic innervation in reflexive urethral closure, the impacts of dopaminergic D2 receptor (DR2)-selective agonists and antagonists on repetitive stimulation-induced pelvic-to-urethra spinal reflex potentiation (SRP) were tested using in vivo rat preparations. Pelvic afferent nerve test stimulation (TS; 1 pulse/30 s for 30 min) evoked baseline reflex activity with single spikes in the external urethral sphincter electromyogram (EUSE), whereas, repetitive stimulation (RS; 1 pulse/s for 30 min) induced SRP. Intrathecal application of quinelorane dihydrochloride (Q110; 10, 30, and 100 nM, 10 μl, a selective DR2 agonist) dose dependently inhibited the RS-induced SRP. Pretreatment with L135 (100 nM, 10 μL it, a selective DR2 antagonist) antagonized the Q110-dependent inhibition (100 nM, 10 μl it). Intrathecal AMPA (10 μM, 10 μl, a selective glutamatergic AMPA receptor agonist), and NMDA (10 μM, 10 μl, a selective glutamatergic NMDA receptor agonist) reversed the Q110-dependent inhibition. Intrathecal forskolin (100 nM, 10 μl, a PKA activator) prevented the Q110-dependent inhibition that was reversed by CNQX (10 μM, 10 μl it, a selective glutamate AMPA receptor antagonist) and APV (10 μM, 10 μl it , a selective glutamate NMDA receptor antagonist). Our results suggest that DR2 activation, which inactivates intracellular PKA, may be involved in descending dopaminergic inhibition of NMDA/AMPA receptor-dependent SRP at the lumbosacral spinal cord, which is thought to be involved in reflexive urethral closure.
KW - D2 receptor
KW - L135
KW - Q110
KW - Rat
KW - Urethra closure
KW - cAMP
UR - http://www.scopus.com/inward/record.url?scp=77956469770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956469770&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00090.2010
DO - 10.1152/ajprenal.00090.2010
M3 - Article
C2 - 20554643
AN - SCOPUS:77956469770
SN - 1931-857X
VL - 299
SP - F681-F686
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 3
ER -