TY - JOUR
T1 - DNA minor groove-binding ligands
T2 - A different class of mammalian DNA topoisomerase I inhibitors
AU - Chen, Allan Y.
AU - Yu, Chiang
AU - Gatto, Barbara
AU - Liu, Leroy F.
PY - 1993/9/1
Y1 - 1993/9/1
N2 - A number of DNA minor groove-binding ligands (MGBLs) are known to exhibit antitumor and antimicrobial activities. We show that DNA topoisomerase (Topo) I may be a pharmacological target of MGBLs. In the presence of calf thymus Topo I, MGBLs induced limited but highly specific single-strand DNA breaks. The 3′ ends of the broken DNA strands are covalently linked to Topo I polypeptides. Protein-linked DNA breaks are readily reversed by a brief heating to 65°C or the addition of 0.5 M NaCl. These results suggest that MGBLs, like camptothecin, abort Topo I reactions by trapping reversible cleavable complexes. The sites of cleavage induced by MGBLs are distinctly different from those induced by camptothecin. Two of the major cleavage sites have been sequenced and shown to be highly A+T-rich, suggesting the possible involvement of a Topo I-drug-DNA ternary complex at the sites of cleavage. Different MGBLs also exhibit varying efficiency in inducing Topo I-cleavable complexes, and the order of efficiency is as follows: Hoechst 33342 and 33258 ≫ distamycin A > berenil > netropsin. The lack of correlation between DNA binding and cleavage efficiency suggests that, in addition to binding to the minor grooves of DNA, MGBLs must also interact with Topo I in trapping Topo I-cleavable complexes.
AB - A number of DNA minor groove-binding ligands (MGBLs) are known to exhibit antitumor and antimicrobial activities. We show that DNA topoisomerase (Topo) I may be a pharmacological target of MGBLs. In the presence of calf thymus Topo I, MGBLs induced limited but highly specific single-strand DNA breaks. The 3′ ends of the broken DNA strands are covalently linked to Topo I polypeptides. Protein-linked DNA breaks are readily reversed by a brief heating to 65°C or the addition of 0.5 M NaCl. These results suggest that MGBLs, like camptothecin, abort Topo I reactions by trapping reversible cleavable complexes. The sites of cleavage induced by MGBLs are distinctly different from those induced by camptothecin. Two of the major cleavage sites have been sequenced and shown to be highly A+T-rich, suggesting the possible involvement of a Topo I-drug-DNA ternary complex at the sites of cleavage. Different MGBLs also exhibit varying efficiency in inducing Topo I-cleavable complexes, and the order of efficiency is as follows: Hoechst 33342 and 33258 ≫ distamycin A > berenil > netropsin. The lack of correlation between DNA binding and cleavage efficiency suggests that, in addition to binding to the minor grooves of DNA, MGBLs must also interact with Topo I in trapping Topo I-cleavable complexes.
UR - http://www.scopus.com/inward/record.url?scp=0027202339&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027202339&partnerID=8YFLogxK
M3 - Article
C2 - 7690143
AN - SCOPUS:0027202339
SN - 0027-8424
VL - 90
SP - 8131
EP - 8135
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 17
ER -