Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat. The interleukin (IL)-12 family cytokines, including IL-12, IL-23 and IL-27, display overlapping, but not redundant, roles in regulating lymphocyte subpopulations. IL-12 is known as a potent antitumor cytokine, whereas the results of the antitumor effect of IL-23 and IL-27 are inconsistent. The present study aimed to directly compare the relative antitumor efficacy of these three IL-12 family cytokines on HCC. Methods: A murine orthotopic BNL HCC model, in which the tumor is located in an environment heavily populated with different lymphocyte subsets, was established. The hepatotropic adeno-associated virus serotype 8 (AAV8) vector was used to deliver the cytokine genes aiming to achieve sustained cytokine expression in the liver. Results: AAV8/IL-12 treatment significantly reduced hepatic metastases and prolonged survival time, whereas treatment with AAV8/IL-23 or AAV8/IL-27 had only moderate antitumor effects at a high dose. The antitumor efficacy of these cytokines was positively correlated with their ability to regulate hepatic T cells, natural killer cells and natural killer T cells, with IL-12 greatly increasing the number and activation status of these cells, whereas IL-27 had no effect and IL-23 had a negative effect. AAV8/IL-12 treatment also resulted in a marked decrease in tumor vessel density, which was not observed with AAV8/IL-23 and AAV8/IL-27 treatment. Conclusions: The data obtained in the present study highlight the importance of local lymphocytes and anti-angiogenesis for influencing the antitumor activity of these three IL-12 family cytokines and suggest that IL-12 is the best candidate for treating HCC.
Original language | English |
---|---|
Pages (from-to) | 423-434 |
Number of pages | 12 |
Journal | Journal of Gene Medicine |
Volume | 12 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2010 |
Keywords
- Adeno-associated virus
- Hepatocellular carcinoma
- IL-12
- IL-23
- IL-27
ASJC Scopus subject areas
- Drug Discovery
- Genetics(clinical)
- Genetics
- Molecular Medicine
- Molecular Biology