Abstract
Purpose: The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet digital light projection (DLP) three-dimensional (3D) printing technique. Design/methodology/approach: Two PCL-based triacrylates, namely, glycerol-3 caprolactone-triacrylate (Gly-3CL-TA) and glycerol-6 caprolactone-triacrylate (Gly-6CL-TA) were synthesized from ring-opening polymerization of ε-caprolacton monomer in the presence of glycerol and then acrylation was performed using acryloyl chloride. 3D printing resins made of Gly-3CL-TA or Gly-6CL-TA, 5% HA and 3% of photoinitiator 2,4,6-Trimethylbenzoyl-diphenyl-phosphineoxide were then formulated. The surface topography, surface element composition, flexural strength, flexural modulus, cytotoxicity and degradation of the PCL-based scaffolds were then characterized. Findings: Resin composite composed of Gly-3CL-TA or Gly-6CL-TA and 5% (w/w) of HA can be printed by 405 nm DLP 3D printers. The former has lower viscosity and thus can form a more uniform layer-by-layer structure, while the latter exhibited a higher flexural strength and modulus after being printed. Both composite materials are non-cytotoxic and degradable. Originality/value: This study provides a direction of the formulation of environment-friendly resin composite for DLP 3D printing. Both resin composites have huge potential in tissue engineering applications.
Original language | English |
---|---|
Pages (from-to) | 951-958 |
Number of pages | 8 |
Journal | Rapid Prototyping Journal |
Volume | 26 |
Issue number | 5 |
DOIs | |
Publication status | Accepted/In press - Jan 1 2020 |
Externally published | Yes |
Keywords
- 3D printing
- Cytotoxicity
- Hydroxyapatite
- Polycaprolactone
- Tissue engineering
ASJC Scopus subject areas
- Mechanical Engineering
- Industrial and Manufacturing Engineering