Abstract

We aimed to develop a deep learning model for the prediction of the risk of advanced colorectal cancer in Taiwanese adults. We collected data of 58152 patients from the Taiwan National Health Insurance database from 1999 to 2013. All patients' comorbidities and medications history were included in the development of the convolution neural network (CNN) model. We also used 3-year medical data of all patients before the diagnosed colorectal cancer (CRC) as the dimensional time in the model. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were computed to measure the performance of the model. The results showed the mean (SD) of AUC of the model was 0.922 (0.004). Moreover, the performance of the model observed the sensitivity of 0.837, specificity of 0.867, and 0.532 for PPV value. Our study utilized CNN to develop a prediction model for CRC, based on non-image and multi-dimensional medical records.

Original languageEnglish
Title of host publicationMEDINFO 2019
Subtitle of host publicationHealth and Wellbeing e-Networks for All - Proceedings of the 17th World Congress on Medical and Health Informatics
EditorsBrigitte Seroussi, Lucila Ohno-Machado, Lucila Ohno-Machado, Brigitte Seroussi
PublisherIOS Press
Pages438-441
Number of pages4
Volume264
ISBN (Electronic)9781643680026
DOIs
Publication statusPublished - Aug 21 2019
Event17th World Congress on Medical and Health Informatics, MEDINFO 2019 - Lyon, France
Duration: Aug 25 2019Aug 30 2019

Publication series

NameStudies in Health Technology and Informatics
Volume264
ISSN (Print)0926-9630
ISSN (Electronic)1879-8365

Conference

Conference17th World Congress on Medical and Health Informatics, MEDINFO 2019
Country/TerritoryFrance
CityLyon
Period8/25/198/30/19

Keywords

  • Algorithms
  • Colorectal Neoplasms
  • Electronic Health Records

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics
  • Health Information Management

Fingerprint

Dive into the research topics of 'Development of deep learning algorithm for detection of colorectal cancer in EHR data'. Together they form a unique fingerprint.

Cite this