Abstract
Successful weaning from prolonged mechanical ventilation (MV) is an important issue in respiratory care centers (RCCs). Delayed or premature extubation increases both the risk of adverse outcomes and healthcare costs. However, the accurate evaluation of the timing of successful weaning from MV is very challenging in RCCs. This study aims to utilize artificial intelligence algorithms to build predictive models for the successful timing of the weaning of patients from MV in RCCs and to implement a dashboard with the best model in RCC settings. A total of 670 intubated patients in the RCC in Chi Mei Medical Center were included in the study. Twenty-six feature variables were selected to build the predictive models with artificial intelligence (AI)/machine-learning (ML) algorithms. An interactive dashboard with the best model was developed and deployed. A preliminary impact analysis was then conducted. Our results showed that all seven predictive models had a high area under the receiver operating characteristic curve (AUC), which ranged from 0.792 to 0.868. The preliminary impact analysis revealed that the mean number of ventilator days required for the successful weaning of the patients was reduced by 0.5 after AI intervention. The development of an AI prediction dashboard is a promising method to assist in the prediction of the optimal timing of weaning from MV in RCC settings. However, a systematic prospective study of AI intervention is still needed.
Original language | English |
---|---|
Article number | 975 |
Journal | Diagnostics |
Volume | 12 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2022 |
Externally published | Yes |
Keywords
- artificial intelligence
- dashboard
- impact analysis
- machine learning
- mechanical ventilation
- prediction
- respiratory care center
- successful weaning
- weaning timing
ASJC Scopus subject areas
- Clinical Biochemistry