Abstract

Millions of experimental animals are widely used in the assessment of toxicological or biological effects of manufactured nanomaterials in medical technology. However, the animal consciousness has increased and become an issue for debate in recent years. Currently, the principle of the 3Rs (i.e., reduction, refinement, and replacement) is applied to ensure the more ethical application of humane animal research. In order to avoid unethical procedures, the strategy of alternatives to animal testing has been employed to overcome the drawbacks of animal experiments. This article provides current alternative strategies to replace or reduce the use of experimental animals in the assessment of nanotoxicity. The currently available alternative methods include in vitro and in silico approaches, which can be used as cost-effective approaches to meet the principle of the 3Rs. These methods are regarded as non-animal approaches and have been implemented in many countries for scientific purposes. The in vitro experiments related to nanotoxicity assays involve cell culture testing and tissue engineering, while the in silico methods refer to prediction using molecular docking, molecular dynamics simulations, and quantitative structure–activity relationship (QSAR) modeling. The commonly used novel cell-based methods and computational approaches have the potential to help minimize the use of experimental animals for nanomaterial toxicity assessments.

Original languageEnglish
Article number4216
JournalInternational journal of molecular sciences
Volume22
Issue number8
DOIs
Publication statusPublished - Apr 2 2021

Keywords

  • Alternative animal test
  • Cell-based test
  • Computational approach
  • Nanotoxicity
  • Tissue engineering

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Current strategies in assessment of nanotoxicity: Alternatives to in vivo animal testing'. Together they form a unique fingerprint.

Cite this