TY - JOUR
T1 - Crystal Structures of the C-Terminally Truncated Endoglucanase Cel9Q from Clostridium thermocellum Complexed with Cellodextrins and Tris
AU - Jeng, Wen Yih
AU - Liu, Chia I.
AU - Lu, Te Jung
AU - Lin, Hong Jie
AU - Wang, Nai Chen
AU - Wang, Andrew H.J.
N1 - Publisher Copyright:
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/1/18
Y1 - 2019/1/18
N2 - Endoglucanase CtCel9Q is one of the enzyme components of the cellulosome, which is an active cellulase system in the thermophile Clostridium thermocellum. The precursor form of CtCel9Q comprises a signal peptide, a glycoside hydrolase family 9 catalytic domain, a type 3c carbohydrate-binding module (CBM), and a type I dockerin domain. Here, we report the crystal structures of C-terminally truncated CtCel9Q (CtCel9QΔc) complexed with Tris, Tris+cellobiose, cellobiose+cellotriose, cellotriose, and cellotetraose at resolutions of 1.50, 1.70, 2.05, 2.05 and 1.75 Å, respectively. CtCel9QΔc forms a V-shaped homodimer through residues Lys529–Glu542 on the type 3c CBM, which pairs two β-strands (β4 and β5 of the CBM). In addition, a disulfide bond was formed between the two Cys535 residues of the protein monomers in the asymmetric unit. The structures allow the identification of four minus (−) subsites and two plus (+) subsites; this is important for further understanding the structural basis of cellulose binding and hydrolysis. In the oligosaccharide-free and cellobiose-bound CtCel9QΔc structures, a Tris molecule was found to be bound to three catalytic residues of CtCel9Q and occupied subsite −1 of the CtCel9Q active-site cleft. Moreover, the enzyme activity assay in the presence of 100 mm Tris showed that the Tris almost completely suppressed CtCel9Q hydrolase activity.
AB - Endoglucanase CtCel9Q is one of the enzyme components of the cellulosome, which is an active cellulase system in the thermophile Clostridium thermocellum. The precursor form of CtCel9Q comprises a signal peptide, a glycoside hydrolase family 9 catalytic domain, a type 3c carbohydrate-binding module (CBM), and a type I dockerin domain. Here, we report the crystal structures of C-terminally truncated CtCel9Q (CtCel9QΔc) complexed with Tris, Tris+cellobiose, cellobiose+cellotriose, cellotriose, and cellotetraose at resolutions of 1.50, 1.70, 2.05, 2.05 and 1.75 Å, respectively. CtCel9QΔc forms a V-shaped homodimer through residues Lys529–Glu542 on the type 3c CBM, which pairs two β-strands (β4 and β5 of the CBM). In addition, a disulfide bond was formed between the two Cys535 residues of the protein monomers in the asymmetric unit. The structures allow the identification of four minus (−) subsites and two plus (+) subsites; this is important for further understanding the structural basis of cellulose binding and hydrolysis. In the oligosaccharide-free and cellobiose-bound CtCel9QΔc structures, a Tris molecule was found to be bound to three catalytic residues of CtCel9Q and occupied subsite −1 of the CtCel9Q active-site cleft. Moreover, the enzyme activity assay in the presence of 100 mm Tris showed that the Tris almost completely suppressed CtCel9Q hydrolase activity.
KW - cellulases
KW - cellulosome
KW - glycosides
KW - hydrolases
KW - X-ray crystallography
UR - http://www.scopus.com/inward/record.url?scp=85060077202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060077202&partnerID=8YFLogxK
U2 - 10.1002/cbic.201800789
DO - 10.1002/cbic.201800789
M3 - Article
C2 - 30609216
AN - SCOPUS:85060077202
SN - 1439-4227
VL - 20
SP - 295
EP - 307
JO - ChemBioChem
JF - ChemBioChem
IS - 2
ER -