Crosstalk between SOX2 and cytokine signaling in endometrial carcinoma

Chang Jung Lee, Pi Lin Sung, Ming Han Kuo, Min Hwa Tsai, Cheng Kuang Wang, Shien Tung Pan, Yi Jen Chen, Peng Hui Wang, Kuo Chang Wen, Yu Ting Chou

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Endometrial carcinoma is a cancer derived from oncogenesis of the regenerating uterine cavity, in which cytokine stimulation shapes cell differentiation and tissue remodeling. Expression of the stem cell factors SOX2, OCT4, NANOG, and MYC has been linked to tumor malignancy in several cancers. However, how these stem cell factors crosstalk with cytokine signaling to promote malignancy in endometrial carcinoma is still elusive. Here we report that the expression of SOX2 and MYC, but not that of OCT4 and NANOG, correlate with poor histological differentiation and prognosis, while SOX2 expression is negatively associated with MYC level. We found that SOX2-high endometrial carcinoma cells possessed a higher colony-forming ability than their SOX2-low counterparts, and knockdown of SOX2 attenuated the colony-forming ability. We observed that SOX2 regulated EGFR expression in a SOX2–EGFR positive feedback loop. EGF stimulation induced SOX2 expression and promoted migration of endometrial carcinoma cells, whereas TGF-β stimulation inhibited SOX2 expression and attenuated the colony-forming ability. Immunohistochemistry analysis revealed that SOX2 expression correlated with lymph node infiltration of endometrial carcinoma. Our findings support that cytokine-induced stem cell factor SOX2 possesses oncogenic properties, with the potential to serve as a prognostic biomarker in endometrial carcinoma.

Original languageEnglish
Article number17550
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Crosstalk between SOX2 and cytokine signaling in endometrial carcinoma'. Together they form a unique fingerprint.

Cite this