Conductive channels identified with contrast-enhanced MR imaging predict ventricular tachycardia in systolic heart failure

Lian Yu Lin, Mao Yuan M. Su, Jien Jiun Chen, Ling Ping Lai, Juey Jen Hwang, Chuen Den Tseng, Yih Sharng Chen, Hsi Yu Yu, Wen Yih I. Tseng, Jiunn Lee Lin

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Objectives This study evaluated whether the conductive channel (CC) identified by late gadolinium enhanced-cardiac magnetic resonance (LGE-CMR) is associated with ventricular tachycardia (VT) in patients with systolic heart failure (HF). Background One recent study demonstrated that the CC formed by heterogeneous tissue within the core scar could be detected by LGE-CMR and that the CC is responsible for clinical VT. We hypothesized that the CC could help identify HF patients at risk for VT. Methods A total of 63 patients from a CMR database with left ventricular ejection fraction (LVEF) below 50% and with hyperenhancement on LGE-CMR were included. The cine and LGE images were analyzed to derive the LV function and scar characteristics, and to identify the CC. The outcomes, including VT, ventricular fibrillation (VF), and total mortality, were obtained by reviewing medical records. Results After a median 1,379 (interquartile range: 271 to 1,896) days of follow-up, 8 patients had VT/VF attacks and 14 patients died. Among the CMR-measured parameters, only the probability of identifying the CC by LGE-CMR was higher in patients with VT/VF than those without VT/VF (75.0% vs. 16.4%, p < 0.001). The probability of identifying the CC was also higher in the total mortality group than the survival group (50.0% vs. 16.3%, p = 0.004). The other LGE-CMR variables were not significantly different between the 2 groups. A univariate Cox regression model showed that CC identification was positively associated with VT/VF attacks (hazard ratio [HR]: 27.032, 95% confidence interval [CI]: 3.291 to 222.054, p = 0.002) and excess total mortality (HR: 4.766, 95% CI: 1.643 to 13.824, p = 0.004). The LVEF was inversely associated with VT/VF attacks (HR: 0.119, 95% CI: 0.015 to 0.977, p = 0.048) and excess total mortality (HR: 0.491, 95% CI: 0.261 to 0.925, p = 0.028) during follow-up. Conclusions We demonstrated that CC identification using LGE-CMR can help identify HF patients at risk for VT/VF.

Original languageEnglish
Pages (from-to)1152-1159
Number of pages8
JournalJACC: Cardiovascular Imaging
Volume6
Issue number11
DOIs
Publication statusPublished - Nov 1 2013
Externally publishedYes

Keywords

  • conductive channel
  • congestive heart failure
  • magnetic resonance image

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Conductive channels identified with contrast-enhanced MR imaging predict ventricular tachycardia in systolic heart failure'. Together they form a unique fingerprint.

Cite this