Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease among obese patients

P. L. Liew, Y. C. Lee, Y. C. Lin, T. S. Lee, W. J. Lee, W. Wang, C. W. Chien

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


Background: Obesity is a risk factor for gallbladder disease. The authors retrospectively analyse the prevalence and risk factors of gallbladder disease using logistic regression and artificial neural networks among obese patients in Taiwan. Methods: Artificial neural networks is a popular technique, which can detect complex patterns within data. They have not been applied to risk of gallbladder disease in obese population. We studied the risk factors associated with gallstones in 117 obese patients who were undergoing bariatric surgery between February 1999 and October 2005. Artificial neural networks, constructed with three-layered back-propagation algorithm, were trained to predict the risk of gallbladder disease. Thirty input variables including clinical data (gender, age, body mass index and associated diseases), laboratory evaluation and histopathologic findings of gallbladder were obtained from the patient records. The result was compared with a logistic regression model developed from the same database. Results: Artificial neural networks demonstrated better average classification rate and lower Type II errors than those of logistic regression. The risk factors from both data mining techniques were diastolic blood pressure, inflammatory condition, abnormal glucose metabolism and cholesterolosis. The biological significance of inflammatory condition in obese population requires further investigation. Conclusion: Artificial neural networks might be a useful tool to predict the risk factors and prevalence of gallbladder disease and gallstone development in obese patients on the basis of multiple variables related to laboratory and pathological features. The performance of artificial neural networks was better than traditional modeling techniques.

Original languageEnglish
Pages (from-to)356-362
Number of pages7
JournalDigestive and Liver Disease
Issue number4
Publication statusPublished - Apr 2007


  • Gallbladder disease
  • Logistic regression
  • Neural networks
  • Obesity

ASJC Scopus subject areas

  • Gastroenterology
  • Hepatology


Dive into the research topics of 'Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease among obese patients'. Together they form a unique fingerprint.

Cite this