Abstract
Each type of classifier has its own advantages as well as certain shortcomings. In this paper, we take the advantages of the associative classifier and the Naïve Bayes Classifier to make up the shortcomings of each other, thus improving the accuracy of text classification. We will classify the training cases with the Naïve Bayes Classifier and set different confidence threshold values for different class association rules (CARs) to different classes by the obtained classification accuracy rate of the Naïve Bayes Classifier to the classes. Since the accuracy rates of all selected CARs of the class are higher than that obtained by the Naïve Bayes Classifier, we could further optimize the classification result through these selected CARs. Moreover, for those unclassified cases, we will classify them with the Naïve Bayes Classifier. The experimental results show that combining the advantages of these two different classifiers better classification result can be obtained than with a single classifier.
Original language | English |
---|---|
Pages (from-to) | 598-604 |
Number of pages | 7 |
Journal | Knowledge-Based Systems |
Volume | 23 |
Issue number | 6 |
DOIs | |
Publication status | Published - Aug 2010 |
Externally published | Yes |
Keywords
- Association classification
- Text categorization
- Text classification
- Text mining
ASJC Scopus subject areas
- Software
- Management Information Systems
- Information Systems and Management
- Artificial Intelligence