Abstract
Currently, the survival rate for breast cancer is more than 90%, but once the cancer cells metastasize to distal organs, the survival rate is dramatically reduced, to less than 30%. Triple-negative breast cancer accounts for 15-20% of all breast cancers. Triple-negative breast cancer (TNBC) is associated with poor prognostic and diagnostic outcomes due to the limiting therapeutic strategies, relative to non-TNBC breast cancers. Therefore, the development of targeted therapy for TNBC metastasis remains an urgent issue. In this study, high Carboxyl-terminal modulator protein (CTMP) is significantly associated with recurrence and disease-free survival rate in TNBC patients. Overexpression of CTMP promotes migration and invasion abilities in BT549 cells. Down-regulating of CTMP expression inhibits migration and invasion abilities in MDA-MB-231 cells. In vivo inoculation of high-CTMP cells enhances distant metastasis in mice. The metastasis incidence rate is decreased in mice injected with CTMP-downregulating MDA-MB-231 cells. Gene expression microarray analysis indicates the Akt-dependent pathway is significantly enhanced in CTMP overexpressing cells compared to the parental cells. Blocking Akt activation via Akt inhibitor treatment or co-expression of the dominant-negative form of Akt proteins successfully abolishes the CTMP mediating invasion in TNBC cells. Our findings suggest that CTMP is a potential diagnostic marker for recurrence and poor disease-free survival in TNBC patients. CTMP promotes TNBC metastasis via the Akt-activation-dependent pathway.
Original language | English |
---|---|
Pages (from-to) | 404-413 |
Number of pages | 10 |
Journal | Cancer Gene Therapy |
Volume | 30 |
Issue number | 3 |
DOIs | |
Publication status | Accepted/In press - Mar 2023 |
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Cancer Research