Calcitriol downregulates fibroblast growth factor receptor 1 through histone deacetylase activation in HL-1 atrial myocytes

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Background: Fibroblast growth factor (FGF)-2 plays a crucial role in the pathophysiology of cardiovascular diseases (CVDs). FGF-2 was reported to induce cardiac hypertrophy through activation of FGF receptor 1 (FGFR1). Multiple laboratory findings indicate that calcitriol may be a potential treatment for CVDs. In this study, we attempted to investigate whether calcitriol regulates FGFR1 expression to modulate the effects of FGF-2 signaling in cardiac myocytes and explored the potential regulatory mechanism. Methods: Western blot, polymerase chain reaction, small interfering RNA, fluorometric activity assay, and chromatin immunoprecipitation (ChIP) analyses were used to evaluate FGFR1, FGFR2, FGFR3, FGFR4, phosphorylated extracellular signal-regulated kinase (p-ERK), β-myosin heavy chain (β-MHC), phosphorylated phospholipase Cγ (p-PLCγ), nuclear factor of activated T cells (NFAT), and histone deacetylase (HDAC) expressions and enzyme activities in HL-1 atrial myocytes without and with calcitriol (1 and 10 nM) treatment, in the absence and presence of FGF-2 (25 ng/mL) or suberanilohydroxamic acid (SAHA, a pan-HDAC inhibitor, 1 μM). Results: We found that calcitriol-treated HL-1 cells had significantly reduced FGFR1 expression compared to control cells. In contrast, expressions of FGFR2, FGFR3, and FGFR4 were similar between calcitriol-treated and control HL-1 cells. FGF-2-treated HL-1 cells had similar PLCγ phosphorylation and nuclear/cytoplasmic NFAT expressions compared to control cells. FGF-2 induced lower expressions of p-ERK and β-MHC in calcitriol-treated HL-1 cells than in control cells. FGFR1-knockdown blocked FGF-2 signaling and reversed the protective effects of calcitriol. Compared to control cells, calcitriol-treated HL-1 cells had higher nuclear HDAC activity. The ChIP analysis demonstrated a significant decrease in acetyl-histone H4, which is associated with an increase in HDAC3 in the FGFR1 promoter. Calcitriol-mediated FGFR1 downregulation was attenuated in the presence of SAHA. Conclusions: Calcitriol diminished FGFR1 expression through HDAC activation, which ameliorated the harmful effects of FGF-2 on cardiac myocytes.

Original languageEnglish
Article number42
JournalJournal of Biomedical Science
Volume25
Issue number1
DOIs
Publication statusPublished - May 18 2018

Keywords

  • Calcitriol
  • Cardiomyocyte
  • Fibroblast growth factor receptor
  • Histone deacetylase
  • Vitamin D

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Calcitriol downregulates fibroblast growth factor receptor 1 through histone deacetylase activation in HL-1 atrial myocytes'. Together they form a unique fingerprint.

Cite this