Brain and Spinal Tumors Originating from the Germ Line Cells

Tai Tong Wong, Min Lan Tsai, Hsi Chang, Kevin Li Chun Hsieh, Donald Ming Tak Ho, Shih Chieh Lin, Hsiu Ju Yen, Yi Wei Chen, Hsin Lun Lee, Tsui Fen Yang

Research output: Contribution to journalArticlepeer-review

Abstract

Primary central nervous system germ cell tumors (CNS GCTs) are part of the GCTs in children and adults. This tumor entity presents with geographic variation, age, and sex predilection. There are two age peaks of incidence distribution at the first few months of life and in adolescence. CNS GCTs are heterogeneous in histopathological subtypes, locations, and tumor marker (AFP, β-hCG) secretions. In the WHO CNS tumor classification, GCTS are classified as germinoma and nongerminomatous GCT (NGGCT) with different subtypes (including teratoma). Excluding mature teratoma, the remaining NGGCTs are malignant (NGMGCT). In teratoma, growing teratoma syndrome and teratoma with somatic-type malignancy should be highlighted. The common intracranial locations are pineal region, neurohypophysis (NH), bifocal pineal-NH, basal ganglia, and cerebral ventricle. Above 50% of intracranial GCTs (IGCTs) present obstructive hydrocephalus. Spinal tumors are rare. Age, locations, hydrocephalus, and serum/CSF titer of β-hCG correlate with clinical manifestations. Delayed diagnosis is common in tumors arising in neurohypophysis, bifocal, and basal ganglia resulting in the increasing of physical dysfunction and hormonal deficits. Staging work-up includes CSF cytology for tumor cells and contrast-enhanced MRI of brain and spine for macroscopic metastasis before treatment commences. The therapeutic approach of CNS GCTs integrates locations, histopathology, staging, tumor marker level, and therapeutic classification. Treatment strategies include surgical biopsy/excision, chemotherapy, radiotherapy (single or combination). Secreting tumors with consistent imaging may not require histopathological diagnosis. Primary germinomas are highly radiosensitive and the therapeutic aim is to maintain high survival rate using optimal radiotherapy regimen with/without chemotherapy combination. Primary NGNGCTs are less radiosensitive. The therapeutic aim is to increase survival utilizing more intensive chemotherapy and radiotherapy. The negative prognostic factors are residue disease at the end of treatment and serum or CSF AFP level >1000 ng/mL at diagnosis. In refractory or recurrent NMGGCTs, besides high-dose chemotherapy, new therapy is necessary. Molecular profiling and analysis help for translational research. Survivors of pediatric brain tumors frequently experience cancer-related cognitive dysfunction, physical disability, pituitary hormone deficiency, and other CNS complications after cranial radiotherapy. Continuous surveillance and assessment may lead to improvements in treatment protocols, transdisciplinary interventions, after-treatment rehabilitation, and quality of life.

Original languageEnglish
Pages (from-to)421-455
Number of pages35
JournalAdvances in Experimental Medicine and Biology
Volume1405
DOIs
Publication statusPublished - 2023

Keywords

  • Central nervous system
  • Germ cell tumor
  • Germinoma
  • Intracranial
  • Nongerminoma
  • Treatment

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Brain and Spinal Tumors Originating from the Germ Line Cells'. Together they form a unique fingerprint.

Cite this