Abstract
Original language | English |
---|---|
Journal | International Journal of Biomedical Imaging |
Volume | 2010 |
DOIs | |
Publication status | Published - 2010 |
Externally published | Yes |
Keywords
- Brain images
- Brain imaging
- Brain tissue
- Cerebral blood flow
- Cerebral blood volume
- Cerebral hemodynamics
- Dynamic images
- Gray matter
- Independent factor analysis
- Magnetic resonance perfusions
- Mean transit time
- Temporal signals
- Time curves
- White matter
- Blood
- Brain
- Hemodynamics
- Hydrodynamics
- Inductively coupled plasma
- Magnetic resonance
- Blind source separation
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Blind source separation of hemodynamics from magnetic resonance perfusion brain images using independent factor analysis'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: International Journal of Biomedical Imaging, Vol. 2010, 2010.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Blind source separation of hemodynamics from magnetic resonance perfusion brain images using independent factor analysis
AU - Wu, Yu-Te
AU - Chou, Yen-Chun
AU - Lu, Chia-Feng
AU - Guo, Wan-Yuo
N1 - 被引用次數:1 Export Date: 31 March 2016 通訊地址: Wu, Y.-T.; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Li-Nong Street, Pei-Tou Taipei 112, Taiwan; 電子郵件: [email protected] 參考文獻: Stergaard, L., Weisskoff, R.M., Chesler, D.A., Gyldensted, G., Rosen, B.R., High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis (1996) Magnetic Resonance in Medicine, 36 (5), pp. 715-725; Stergaard, L., Sorensen, A.G., Kwong, K.K., Weisskoff, R.M., Gyldensted, C., Rosen, B.R., High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results (1996) Magnetic Resonance in Medicine, 36 (5), pp. 726-736; Calamante, F., Thomas, D.L., Pell, G.S., Wiersma, J., Turner, R., Measuring cerebral blood flow using magnetic resonance imaging techniques (1999) Journal of Cerebral Blood Flow and Metabolism, 19 (7), pp. 701-735; Rempp, K.A., Brix, G., Wenz, F., Becker, C.R., Guckel, F., Lorenz, W.J., Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging (1994) Radiology, 193 (3), pp. 637-641; Rosen, B.R., Belliveau, J.W., Vevea, J.M., Brady, T.J., Perfusion imaging with NMR contrast agents (1990) Magnetic Resonance in Medicine, 14 (2), pp. 249-265; Schreiber, W.G., Gckel, F., Stritzke, P., Schmiedek, P., Schwartz, A., Brix, G., Cerebral blood flow and cerebrovascular reserve capacity: Estimation by dynamic magnetic resonance imaging (1998) Journal of Cerebral Blood Flow and Metabolism, 18 (10), pp. 1143-1156; Sorensen, A.G., Tievsky, A.L., Stergaard, L., Weisskoff, R.M., Rosen, B.R., Contrast agents in functional MR imaging (1997) Journal of Magnetic Resonance Imaging, 7 (1), pp. 47-55; Van Osch, M.J.P., Vonken, E.J., Wu, O., Viergever, M.A., Van Der Grond, J., Bakker, C.J., Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI (2003) Magnetic Resonance in Medicine, 50 (3), pp. 614-622; Wenz, F., Rempp, K., Brix, G., Age dependency of the regional cerebral blood volume (rCBV) measured with dynamic susceptibility contrast MR imaging (DSC) (1996) Magnetic Resonance Imaging, 14 (2), pp. 157-162; Wu, O., Stergaard, L., Weisskoff, R.M., Benner, T., Rosen, B.R., Sorensen, A.G., Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix (2003) Magnetic Resonance in Medicine, 50 (1), pp. 164-174; Lassen, N.A., Perl, W., (1979) Tracer Kinetic Methods in Medical Physiology, , New York, NY, USA Raven; Zierler, K.L., Theoretical basis of indicator-dilution methods for measuring flow and volume (1962) Circulation Research, 10 (3), pp. 393-407; Aronen, H.J., Glass, J., Pardo, F.S., Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility (1995) Acta Radiologica, 36 (5), pp. 520-528; Sorensen, A.G., Copen, W.A., Stergaard, L., Hyperacute stroke: Simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time (1999) Radiology, 210 (2), pp. 519-527; Ernst, T.M., Chang, L., Witt, M.D., Cerebral toxoplasmosis and lymphoma in aids: Perfusion MR imaging experience in 13 patients (1998) Radiology, 208 (3), pp. 663-669; Yamada, I., Himeno, Y., Nagaoka, T., Moyamoya disease: Evaluation with diffusion-weighted and perfusion echo-planar MR imaging (1999) Radiology, 212 (2), pp. 340-347; Ohashi, K., Fernandez-Ulloa, M., Hall, L.C., SPECT, magnetic resonance and angiographic features in a moyamoya patient before and after external-to-internal carotid artery bypass (1992) Journal of Nuclear Medicine, 33 (9), pp. 1692-1695; Wiart, M., Rognin, N., Berthezene, Y., Nighoghossian, N., Froment, J.C., Baskurt, A., Perfusion-based segmentation of the human brain using similarity mapping (2001) Magnetic Resonance in Medicine, 45 (2), pp. 261-268; Martel, A.L., Moody, A.R., Allder, S.J., Delay, G.S., Morgan, P.S., Extracting parametric images from dynamic contrast-enhanced MRI studies of the brain using factor analysis (2001) Medical Image Analysis, 5 (1), pp. 29-39; Ahn, J.Y., Lee, D.S., Lee, J.S., Quantification of regional myocardial blood flow using dynamic H 2 O 15 PET and factor analysis (2001) Journal of Nuclear Medicine, 42 (5), pp. 782-787; Hermansen, F., Ashburner, J., Spinks, T.J., Kooner, J.S., Camici, P.G., Lammertsma, A.A., Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan (1998) Journal of Nuclear Medicine, 39 (10), pp. 1696-1702; Wu, H.M., Hoh, C.K., Choi, Y., Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies (1995) Journal of Nuclear Medicine, 36 (9), pp. 1714-1722; Barber, D.C., The use of principal components in the quantitative analysis of gamma camera dynamic studies (1980) Physics in Medicine and Biology, 25 (2), pp. 283-292; Di Paola, R., Bazin, J.P., Aubry, F., Handling of dynamic sequences in nuclear medicine (1982) IEEE Transactions on Nuclear Science, 29, pp. 1310-1321; Houston, A.S., The effect of apex-finding errors on factor images obtained from factor analysis and oblique transformation (nuclear medicine) (1984) Physics in Medicine and Biology, 29 (9), pp. 1109-1116; Wu, Y.T., Chou, Y.C., Guo, W.Y., Yeh, T.C., Hsieh, J.C., Classification of spatiotemporal hemodynamics from brain perfusion MR images using expectation-maximization estimation with finite mixture of multivariate gaussian distributions (2007) Magnetic Resonance in Medicine, 57 (1), pp. 181-191; Attias, H., Independent factor analysis (1999) Neural Computation, 11 (4), pp. 803-851; Nagarajan, S.S., Attias, H.T., Ii, E.H.K., Sekihara, K., A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity (2006) NeuroImage, 30 (2), pp. 400-416; Otsu, N., A threshold selection method from gray-level histograms (1979) IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), pp. 62-66; Weisskoff, R.M., Zuo, C.S., Boxerman, J.L., Rosen, B.R., Microscopic susceptibility variation and transverse relaxation: Theory and experiment (1994) Magnetic Resonance in Medicine, 31 (6), pp. 601-610; Kety, S.S., Blood-tissue exchange methods: Theory of blood-tissue exchange and its application to measurement of blood flow (1960) Methods in Medical Research, 8, pp. 223-227; Friedman, J.H., Exploratory projection pursuit (1987) Journal of the American Statistical Association, 82 (397), pp. 249-266; Fyfe, C., A comparative study of two neural methods of exploratory projection pursuit (1997) Neural Networks, 10 (2), pp. 257-262; MacKay, D.J.C., Bayesian interpolation (1992) Neural Computation, 4 (3), pp. 415-447
PY - 2010
Y1 - 2010
N2 - Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT). The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature. Copyright © 2010 Yen-Chun Chou et al.
AB - Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT). The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature. Copyright © 2010 Yen-Chun Chou et al.
KW - Brain images
KW - Brain imaging
KW - Brain tissue
KW - Cerebral blood flow
KW - Cerebral blood volume
KW - Cerebral hemodynamics
KW - Dynamic images
KW - Gray matter
KW - Independent factor analysis
KW - Magnetic resonance perfusions
KW - Mean transit time
KW - Temporal signals
KW - Time curves
KW - White matter
KW - Blood
KW - Brain
KW - Hemodynamics
KW - Hydrodynamics
KW - Inductively coupled plasma
KW - Magnetic resonance
KW - Blind source separation
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-77952513077&partnerID=40&md5=ba3da4194b0d408dba2ff25dd0196ea9
UR - https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-77952513077&src=s&imp=t&sid=c5e8d1e9560c0461a1956c303222a47f&sot=cite&sdt=a&sl=0&origin=recordpage&editSaveSearch=&txGid=4f3f15060cfaa27384d1697a79da1978
U2 - 10.1155/2010/360568
DO - 10.1155/2010/360568
M3 - Article
SN - 1687-4188
VL - 2010
JO - International Journal of Biomedical Imaging
JF - International Journal of Biomedical Imaging
ER -