Abstract

A hybrid fixation method, using a combination of vertebroplasty and cement-augmented screws, has been demonstrated as a useful technique for securing osteoporotic burst fractures. The purpose of this study was to assess changes in the range of motion (ROM) and stress in the spine after treating a lumbar burst fracture with this hybrid method. Five finite element models were developed: (a) intact lumbar spine (INT), (b) INT with vertebroplasty at L3 (AwC), (c) two-segment fixation of AwC (AwC-TSF), (d) AwC-TSF model with cement-augmented screws (AwC-TSF-S), and (e) INT with an L3 burst fracture treated with two-segment fixation (TSF). After loading, the models were evaluated in terms of the ROM of each motion segment, stiffness of fusion segments, and stresses on the endplates and screws. The results showed that the TSF model has a larger ROM at the instrumented segments than both the AwC-TSF and AwC-TSF-S models. The stiffness at L2-L4 under extension and lateral bending in AwC-TSF, AwC-TSF-S and TSF was approximately nine times greater than the INT model. In conclusion, the hybrid fixation method (AwC-TSF-S) results in a stiffer construct and lower ROM at instrumented segments, which may also reduce the risk of fracture of adjacent vertebrae.

Original languageEnglish
Article number2133
JournalApplied Sciences (Switzerland)
Volume10
Issue number6
DOIs
Publication statusPublished - Mar 1 2020

Keywords

  • Cement-augmented screws
  • Finite element analysis
  • Lumbar burst fractures
  • Two-segment fixation
  • Vertebroplasty

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Biomechanical assessment of vertebroplasty combined with cement-augmented screw fixation for lumbar burst fractures: A finite element analysis'. Together they form a unique fingerprint.

Cite this