Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling

Chen Wen Lu, Yann Hung, Jong Kai Hsiao, Ming Yao, Tsai Hua Chung, Yu Shen Lin, Si Han Wu, Szu Chun Hsu, Hon Man Liu, Chung Yuan Mou, Chung Shi Yang, Dong Ming Huang, Yao Chang Chen

Research output: Contribution to journalArticlepeer-review

497 Citations (Scopus)

Abstract

A superparamagnetic iron oxide (SPIO) nanoparticle is emerging as an ideal probe for noninvasive cell tracking. However, its low intracellular labeling efficiency has limited the potential usage and has evoked great interest in developing new labeling strategies. We have developed fluorescein isothiocyanate (FITC)-incorporated silica-coated core-shell SPIO nanoparticles, SPIO@SiO 2(FITC), with diameters of 50 nm, as a bifunctionally magnetic vector that can efficiently label human mesenchymal stem cells (hMSCs), via clathrin- and actin-dependent endocytosis with subsequent intracellular localization in late endosomes/lysosomes. The uptake process displays a time- and dose-dependent behavior. In our system, SPIO@SiO2(FITC) nanoparticles induce sufficient cell MRI contrast at an incubation dosage as low as 0.5 μg of iron/ml of culture medium with 1.2 × 105 hMSCs, and the in vitro detection threshold of cell number is about 1 × 104 cells. Furthermore, 1.2 × 105 labeled cells can also be MRI-detected in a subcutaneous model in vivo. Labeled hMSCs are unaffected in their viability, proliferation, and differentiation capacities into adipocytes and osteocytes which can still be readily MRI detected. This is the first report that hMSCs can be efficiently labeled with MRI contrast nanoparticles and can be monitored in vitro and in vivo with a clinical 1.5-T MRI imager under low incubation concentration of iron oxide, short incubation time, and low detection cell numbers at the same time.

Original languageEnglish
Pages (from-to)149-154
Number of pages6
JournalNano Letters
Volume7
Issue number1
DOIs
Publication statusPublished - Jan 2007
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Condensed Matter Physics
  • Mechanical Engineering
  • Bioengineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling'. Together they form a unique fingerprint.

Cite this