Automatic recognition of midline shift on brain CT images

Chun Chih Liao, Furen Xiao, Jau Min Wong, I-Jen Chiang

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)


Midline shift is one of the most important quantitative features clinicians use to evaluate the severity of brain compression by various pathologies. It can be recognized by modeling brain deformation according to the estimated biomechanical properties of the brain and the cerebrospinal fluid spaces. This paper proposes a novel method to identify the deformed midline according to the above hypothesis. In this model, the deformed midline is decomposed into three segments: the upper and the lower straight segments representing parts of the tough dura mater separating two brain hemispheres, and the central curved segment formed by a quadratic Bezier curve, representing the intervening soft brain tissue. The deformed midline is obtained by minimizing the summed square of the differences across all midline pixels, to simulate maximal bilateral symmetry. A genetic algorithm is applied to derive the optimal values of the control points of the Bezier curve. Our algorithm was evaluated on pathological images from 81 consecutive patients treated in a single institute over a period of one year. Our algorithm is able to recognize the deformed midlines in 65 (80%) of the patients with an accuracy of 95%, making it a useful tool for clinical decision-making.

Original languageEnglish
Pages (from-to)331-339
Number of pages9
JournalComputers in Biology and Medicine
Issue number3
Publication statusPublished - Mar 2010


  • Brain deformation
  • Computed tomography
  • Genetic algorithm
  • Medical informatics
  • Midline shift
  • Pathological images
  • Symmetry detection

ASJC Scopus subject areas

  • Computer Science Applications
  • Health Informatics


Dive into the research topics of 'Automatic recognition of midline shift on brain CT images'. Together they form a unique fingerprint.

Cite this