Attenuating experimental spinal cord injury by hyperbaric oxygen: Stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10

Po An Tai, Cheng Kuei Chang, Ko Chi Niu, Mao Tsun Lin, Wen Ta Chiu, Chien Min Lin

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

The present study was carried out to further examine the mechanisms underlying the beneficial effects of hyperbaric oxygen (HBO2) on experimental spinal cord injury (SCI). Rats were divided into three major groups: (1) sham operation (laminectomy only); (2) laminectomy + SCI + normobaric air (NBA; 21% oxygen at 1 ATA); and (3) laminectomy + SCI + HBO 2 (100% oxygen at 2.5 ATA for 2 h). Spinal cord injury was induced by compressing the spinal cord for 1 min with an aneurysm clip calibrated to a closing pressure of 55 g. HBO2 therapy was begun immediately after SCI. Behavioral tests of hindlimb motor function as measured by the Basso, Beattie, and Bresnahan (BBB) locomotor scale was conducted on days 1-7 post-SCI. The triphenyltetrazolium chloride staining assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling assay were also conducted after SCI to evaluate spinal cord infarction and apoptosis, respectively. Cells positive for glial cell line-derived neurotrophic nerve growth factor (GDNF) and vascular endothelial growth factor (VEGF) and cytokines in the injured spinal cord were assayed by immunofluorescence and commercial kits, respectively. It was found that HBO2 therapy significantly attenuated SCI-induced hindlimb dysfunction, and spinal cord infarction and apoptosis, as well as overproduction of spinal cord interleukin-1β and tumor necrosis factor-α. In contrast, the numbers of both GDNF-positive and VEGF-positive cells and production of spinal cord interleukin-10 after SCI were all significantly increased by HBO2. These data suggest that HBO2 may attenuate experimental SCI by stimulating production of GDNF, VEGF, and interleukin-10.

Original languageEnglish
Pages (from-to)1121-1128
Number of pages8
JournalJournal of Neurotrauma
Volume27
Issue number6
DOIs
Publication statusPublished - Jun 1 2010

Keywords

  • apoptosis
  • interleukin-10
  • neurotrophic factor
  • spinal cord injury
  • vascular endothelial growth factor

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Attenuating experimental spinal cord injury by hyperbaric oxygen: Stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10'. Together they form a unique fingerprint.

Cite this