Association of polyethylene friction and thermal unfolding of interfacial albumin molecules

Hsu Wei Fang, Meng Lin Shih, Jian Hua Zhao, Huei Ting Huang, Hsin Yi Lin, Hsuan Liang Liu, Chih Hung Chang, Charng Bin Yang, Hwa Chang Liu

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Under the articulation of artificial joints, ultra-high molecular weight polyethylene (UHMWPE) acts as a bearing surface under the lubrication of synovial fluid containing various proteins. Albumin is the most abundant composition and acts as the interfacial molecule in the boundary lubrication regime. The dissipated energy including thermal energy from the tribological process may lead to the conformational change of albumin molecules. In this study, a series of experiments were designed and carried out to investigate the association of thermal unfolding albumin and the frictional characteristics of highly-crosslinked UHMWPE (x-UHMWPE). An accelerated oxidation experiment was used to prepare x-UHMWPE with an oxidized surface. Analysis of the albumin protein by circular dichroism (CD) spectroscopy was performed to detect the conformational changes during a thermal process. In addition, a molecular simulation was performed to understand the structural change of albumin at various temperatures and the exposed hydrophobic contact areas. Linear reciprocating frictional tests were carried out to obtain the start-up friction coefficients. The results indicate that a decrease of α-helix content and an unfolding of the secondary structure of albumin were observed with increasing temperatures which may come from the frictional heat of joint articulation process. The conformational change of albumin differentiates the frictional characteristics for x-UHMWPE with different oxidation levels. A model, describing that the properties of the lubricating molecules and articulating surfaces may affect the adsorption of the boundary lubrication thin film which is critical to the tribological behavior, is proposed.

Original languageEnglish
Pages (from-to)6896-6904
Number of pages9
JournalApplied Surface Science
Volume253
Issue number16
DOIs
Publication statusPublished - Jun 15 2007
Externally publishedYes

Keywords

  • Albumin
  • Conformation
  • Friction
  • UHMWPE

ASJC Scopus subject areas

  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Association of polyethylene friction and thermal unfolding of interfacial albumin molecules'. Together they form a unique fingerprint.

Cite this