TY - JOUR
T1 - ASS1 as a novel tumor suppressor gene in myxofibrosarcomas
T2 - Aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance
AU - Huang, Hsuan Ying
AU - Wu, Wen Ren
AU - Wang, Yu Hui
AU - Wang, Jun Wen
AU - Fang, Fu Min
AU - Tsai, Jen Wei
AU - Li, Shau Hsuan
AU - Hung, Hsiao Chin
AU - Yu, Shih Chen
AU - Lan, Jui
AU - Shiue, Yow Ling
AU - Hsing, Chung-Hsi
AU - Chen, Li Tzong
AU - Li, Chien Feng
PY - 2013/6/1
Y1 - 2013/6/1
N2 - Purpose: The principal goals were to identify and validate targetable metabolic drivers relevant to myxofibrosarcoma pathogenesis using a published transcriptome. Experimental Design: As the most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase ( ASS1) was selected for further analysis by methylation-specific PCR, pyrosequencing, and immunohistochemistry of myxofibrosarcoma samples. The roles of ASS1 in tumorigenesis and the therapeutic relevance of the arginine-depriving agent pegylated arginine deiminase (ADI-PEG20) were elucidated in ASS1-deficient myxofibrosarcoma cell lines and xenografts with and without stable ASS1 reexpression. Results: ASS1 promoter hypermethylation was detected in myxofibrosarcoma samples and cell lines and was strongly linked to ASS1 protein deficiency. The latter correlated with increased tumor grade and stage and independently predicted a worse survival. ASS1-deficient cell lines were auxotrophic for arginine and susceptible to ADI-PEG20 treatment, with dose-dependent reductions in cell viability and tumor growth attributable to cell-cycle arrest in the S-phase. ASS1 expression was restored in 2 of 3 ASS1-deficient myxofibrosarcoma cell lines by 5-aza-2′-deoxycytidine, abrogating the inhibitory effect of ADI-PEG20. Conditioned media following ASS1 reexpression attenuated HUVEC tube-forming capability, which was associated with suppression of MMP-9 and an antiangiogenic effect in corresponding myxofibrosarcoma xenografts. In addition to delayed wound closure and fewer invading cells in a Matrigel assay, ASS1 reexpression reduced tumor cell proliferation, induced G1-phase arrest, and downregulated cyclin E with corresponding growth inhibition in soft agar and xenograft assays. Conclusions: Our findings highlight ASS1 as a novel tumor suppressor in myxofibrosarcomas, with loss of expression linked to promoter methylation, clinical aggressiveness, and sensitivity to ADI-PEG20.
AB - Purpose: The principal goals were to identify and validate targetable metabolic drivers relevant to myxofibrosarcoma pathogenesis using a published transcriptome. Experimental Design: As the most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase ( ASS1) was selected for further analysis by methylation-specific PCR, pyrosequencing, and immunohistochemistry of myxofibrosarcoma samples. The roles of ASS1 in tumorigenesis and the therapeutic relevance of the arginine-depriving agent pegylated arginine deiminase (ADI-PEG20) were elucidated in ASS1-deficient myxofibrosarcoma cell lines and xenografts with and without stable ASS1 reexpression. Results: ASS1 promoter hypermethylation was detected in myxofibrosarcoma samples and cell lines and was strongly linked to ASS1 protein deficiency. The latter correlated with increased tumor grade and stage and independently predicted a worse survival. ASS1-deficient cell lines were auxotrophic for arginine and susceptible to ADI-PEG20 treatment, with dose-dependent reductions in cell viability and tumor growth attributable to cell-cycle arrest in the S-phase. ASS1 expression was restored in 2 of 3 ASS1-deficient myxofibrosarcoma cell lines by 5-aza-2′-deoxycytidine, abrogating the inhibitory effect of ADI-PEG20. Conditioned media following ASS1 reexpression attenuated HUVEC tube-forming capability, which was associated with suppression of MMP-9 and an antiangiogenic effect in corresponding myxofibrosarcoma xenografts. In addition to delayed wound closure and fewer invading cells in a Matrigel assay, ASS1 reexpression reduced tumor cell proliferation, induced G1-phase arrest, and downregulated cyclin E with corresponding growth inhibition in soft agar and xenograft assays. Conclusions: Our findings highlight ASS1 as a novel tumor suppressor in myxofibrosarcomas, with loss of expression linked to promoter methylation, clinical aggressiveness, and sensitivity to ADI-PEG20.
UR - http://www.scopus.com/inward/record.url?scp=84878983669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878983669&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-12-2641
DO - 10.1158/1078-0432.CCR-12-2641
M3 - Article
C2 - 23549872
AN - SCOPUS:84878983669
SN - 1078-0432
VL - 19
SP - 2861
EP - 2872
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 11
ER -