Abstract
Artocarpin has been shown to exhibit cytotoxic effects on different cancer cells, including non-small cell lung carcinoma (NSCLC, A549). However, the underlying mechanisms remain unclear. Here, we explore both p53-dependent and independent apoptosis pathways in artocarpin-treated NSCLC cells. Our results showed that artocarpin rapidly induced activation of cellular protein kinases including Erk1/2, p38 and AktS473. Inhibition of these protein kinases prevented artocarpin-induced cell death. Moreover, artocarpin-induced phosphorylation of these protein kinases and apoptosis were mediated by induction of reactive oxygen species (ROS), as pretreatment with NAC (a ROS scavenger) and Apocynin (a Nox-2 inhibitor) blocked these events. Similarly, transient transfection of p47Phox or p91Phox siRNA attenuated artocarpininduced NADPH oxidase activity and cell death. In addition, p53 dependent apoptotic proteins including PUMA, cytochrome c, Apaf-1 and caspase 3 were activated by artocarpin, and these effects can be abolished by antioxidants, MAPK inhibitors (U0126 and SB202190), but not by PI3K inhibitor (LY294002). Furthermore, we found that artocarpin-induced Akt phosphorylation led to increased NF-κB activity, which may act as an upstream regulator in the c-Myc and Noxa pathway. Therefore, we propose that enhancement of both ERK/ p38/ p53-dependent or independent AktS473/NF-κB/c-Myc/Noxa cascade by Nox-derived ROS generation plays an important role in artocarpin-induced apoptosis in NSCLC cells.
Original language | English |
---|---|
Pages (from-to) | 28342-28358 |
Number of pages | 17 |
Journal | Oncotarget |
Volume | 8 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Apoptosis
- Artocarpin
- Lung cancer
- P53
- Pro-oxidation
ASJC Scopus subject areas
- Oncology