Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause of death globally. Identification of early gastric cancer (EGC) can ensure quick treatment and reduce significant mortality. Therefore, we aimed to conduct a systematic review with a meta-analysis of current literature to evaluate the performance of the CNN model in detecting EGC. We conducted a systematic search in the online databases (e.g., PubMed, Embase, and Web of Science) for all relevant original studies on the subject of CNN in EGC published between January 1, 2010, and March 26, 2021. The Quality Assessment of Diagnostic Accuracy Studies-2 was used to assess the risk of bias. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Moreover, a summary receiver operating characteristic curve (SROC) was plotted. Of the 171 studies retrieved, 15 studies met inclusion criteria. The application of the CNN model in the diagnosis of EGC achieved a SROC of 0.95, with corresponding sensitivity of 0.89 (0.88–0.89), and specificity of 0.89 (0.89–0.90). Pooled sensitivity and specificity for experts endoscopists were 0.77 (0.76–0.78), and 0.92 (0.91–0.93), respectively. However, the overall SROC for the CNN model and expert endoscopists was 0.95 and 0.90. The findings of this comprehensive study show that CNN model exhibited comparable performance to endoscopists in the diagnosis of EGC using digital endoscopy images. Given its scalability, the CNN model could enhance the performance of endoscopists to correctly stratify EGC patients and reduce work load.

Original languageEnglish
Article number5253
Issue number21
Publication statusPublished - Nov 2021


  • Artificial intelligence
  • Convolutional neural network
  • Deep learning
  • Endoscopy image
  • Gastric cancer

ASJC Scopus subject areas

  • Oncology
  • Cancer Research


Dive into the research topics of 'Artificial intelligence in gastric cancer: Identifying gastric cancer using endoscopic images with convolutional neural network'. Together they form a unique fingerprint.

Cite this