Array-based resequencing for mutations causing familial hypercholesterolemia

Kuan Rau Chiou, Min Ji Charng, Hua Mei Chang

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Background: Familial hypercholesterolemia (FH) is a heterogeneous autosomal dominant disease with a prevalence of 1 in 500. To date, over 1200 unique pathogenic mutations have been identified in at least 3 genes. The large allelic and genetic heterogeneity of FH requires high-throughput, rapid, and affordable mutation detection technology to efficiently integrate molecular screening into clinical practice. We developed an array-based resequencing assay to facilitate genetic testing in FH patients. Methods and results: We designed a custom DNA resequencing array to detect mutations on all 3 FH-causing genes - LDL receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 gene (PCSK9) - and 290 known insertion/deletion mutations on LDLR. We verified FH array performance by analyzing 35 previously sequenced subjects (21 with point mutations, 2 insertions, 7 deletions, and 5 healthy controls) and blindly screening 125 FH patients. The average microarray call rate was 98.45% and the agreement between microarray and capillary sequencing was 99.99%. The FH array detected mutations by using automated software analysis, followed by manual review in 28 of the 30 subjects (pickup rate, 93.3%). In the blinded study, the FH array detected at least 1 mutation in 77.5% of patients clinically diagnosed with definite FH according to Simon Broome FH criteria and in 52.9% with probable FH diagnosis. Conclusions: The high-throughput FH resequencing array detects LDLR, APOB, and PCSK9 with high efficiency and accuracy and identifies disease-causing mutations. Thus, it facilitates large-scale screening of the heterogeneous FH populations.

Original languageEnglish
Pages (from-to)383-389
Number of pages7
Issue number2
Publication statusPublished - Jun 1 2011
Externally publishedYes


  • Array
  • Familial defective apolipoprotein B
  • Familial hypercholesterolemia
  • Resequence

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Array-based resequencing for mutations causing familial hypercholesterolemia'. Together they form a unique fingerprint.

Cite this