Application of Electric Cell-Substrate Impedance Sensing to Investigate the Cytotoxic Effects of Andrographolide on U-87 MG Glioblastoma Cell Migration and Apoptosis

Sheng Po Chiu, Buyandelger Batsaikhan, Huei Mei Huang, Jia Yi Wang

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. In recent studies, the efficacy of suberoylanilide hydroxamic acid (SAHA) has been investigated for GBM. We explored the effects of two exploratory compounds, the histone deacetylase SAHA and the natural product andrographolide, on Uppsala 87 Malignant Glioma (U-87 MG) cell migration and viability in comparison with the clinically used therapeutic agent temozolomide (TMZ). We used the electric cell-substrate impedance sensing (ECIS) system to monitor the migration of U-87 MG cells after treatment with various concentrations of these compounds. Moreover, we used the Alamar blue assay and western blotting to observe the concentration-dependent changes in the viability and apoptosis of U-87 MG cells. Our results demonstrated that both SAHA and andrographolide (10-300 μM) significantly inhibited GBM cell migration in a concentration-dependent manner, and 10 μM SAHA and 56 μM andrographolide demonstrated remarkable inhibitory effects on U-87 MG migration. Western blotting indicated that compared with TMZ, both SAHA and andrographolide induced higher expression levels of apoptosis-related proteins, such as caspase-3, BAX, and PARP in U-87 MG cells. Furthermore, all three drugs downregulated the expression of the antiapoptotic protein Bcl-2. In conclusion, SAHA and andrographolide showed exceptional results in inhibiting cell migration and motility. The ECIS wound healing assay is a powerful technique to identify and screen potential therapeutic agents that can inhibit cancer cell migration.

Original languageEnglish
JournalSensors (Basel, Switzerland)
Volume19
Issue number10
DOIs
Publication statusPublished - May 16 2019

Keywords

  • andrographolide
  • ECIS
  • glioblastoma multiforme
  • suberoylanilide hydroxamic acid
  • temozolomide

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Application of Electric Cell-Substrate Impedance Sensing to Investigate the Cytotoxic Effects of Andrographolide on U-87 MG Glioblastoma Cell Migration and Apoptosis'. Together they form a unique fingerprint.

Cite this