TY - JOUR
T1 - Anti-melanoma activity of Bupleurum chinense, Bupleurum kaoi and nanoparticle formulation of their major bioactive compound saikosaponin-d
AU - Hu, Stephen Chu Sung
AU - Lee, I-Ta
AU - Yen, Ming Hong
AU - Lin, Chun Ching
AU - Lee, Chiang Wen
AU - Yen, Feng Lin
N1 - Publisher Copyright:
© 2016 Elsevier Ireland Ltd. All rights reserved.
PY - 2016/2/17
Y1 - 2016/2/17
N2 - Ethnopharmacological relevance Bupleurum chinense is a traditional Chinese medicinal herb which has been used to treat various inflammatory and infectious diseases, while Bupleurum kaoi is an endemic plant in Taiwan. We determined whether B. chinense and B. kaoi and their biologically active saikosaponin compounds possess anti-melanoma activity. In addition, we developed a novel saikosaponin-d nanoparticle system to improve its solubility, and evaluated its antiproliferative effects and molecular mechanisms in melanoma cells. Materials and methods Ethanolic extracts from B. chinense and B. kaoi were prepared, and their saikosaponin contents were determined by high performance liquid chromatography analysis. Saikosaponin-d nanoparticles were synthesized, and their physicochemical properties were evaluated by particle size analyzer, transmission electron microscopy, differential scanning calorimetry, X-ray diffractometry, and Fourier transform infrared spectroscopy. Human A375.S2 melanoma cells were cultured, and cell viability determined by the MTT assay. Apoptosis was evaluated by determination of mitochondrial membrane potential, and signal transduction pathways investigated by Western blotting. Results Ethanolic extracts from B. kaoi showed more potent antiproliferative effect on human A375.S2 melanoma cells compared to B. chinense. The saikosaponin-a, -c and -d contents were higher in B. kaoi compared to B. chinense. Saikosaponin-d was the most potent compound in terms of anti-melanoma activity, and saikosaponin-d nanoparticles exhibited increased water solubility due to lowered particle size, amorphous transformation and intermolecular hydrogen bond formation with the excipient. Furthermore, saikosaponin-d nanoparticles showed enhanced antiproliferative activity against melanoma cells, and induced apoptosis through the mitochondrial pathway. The anti-melanoma activity was mediated by phosphorylation of JNK and p38, phosphorylation of p53, increased level of cytochrome c, and activation of caspase 9. Conclusions B. kaoi contains higher saikosaponin content and shows greater anti-melanoma activity than B. chinense. Saikosaponin-d nanoparticles have improved solubility, and may have potential use in the future as a form of treatment for melanoma.
AB - Ethnopharmacological relevance Bupleurum chinense is a traditional Chinese medicinal herb which has been used to treat various inflammatory and infectious diseases, while Bupleurum kaoi is an endemic plant in Taiwan. We determined whether B. chinense and B. kaoi and their biologically active saikosaponin compounds possess anti-melanoma activity. In addition, we developed a novel saikosaponin-d nanoparticle system to improve its solubility, and evaluated its antiproliferative effects and molecular mechanisms in melanoma cells. Materials and methods Ethanolic extracts from B. chinense and B. kaoi were prepared, and their saikosaponin contents were determined by high performance liquid chromatography analysis. Saikosaponin-d nanoparticles were synthesized, and their physicochemical properties were evaluated by particle size analyzer, transmission electron microscopy, differential scanning calorimetry, X-ray diffractometry, and Fourier transform infrared spectroscopy. Human A375.S2 melanoma cells were cultured, and cell viability determined by the MTT assay. Apoptosis was evaluated by determination of mitochondrial membrane potential, and signal transduction pathways investigated by Western blotting. Results Ethanolic extracts from B. kaoi showed more potent antiproliferative effect on human A375.S2 melanoma cells compared to B. chinense. The saikosaponin-a, -c and -d contents were higher in B. kaoi compared to B. chinense. Saikosaponin-d was the most potent compound in terms of anti-melanoma activity, and saikosaponin-d nanoparticles exhibited increased water solubility due to lowered particle size, amorphous transformation and intermolecular hydrogen bond formation with the excipient. Furthermore, saikosaponin-d nanoparticles showed enhanced antiproliferative activity against melanoma cells, and induced apoptosis through the mitochondrial pathway. The anti-melanoma activity was mediated by phosphorylation of JNK and p38, phosphorylation of p53, increased level of cytochrome c, and activation of caspase 9. Conclusions B. kaoi contains higher saikosaponin content and shows greater anti-melanoma activity than B. chinense. Saikosaponin-d nanoparticles have improved solubility, and may have potential use in the future as a form of treatment for melanoma.
KW - Apoptosis
KW - Bupleurum chinense
KW - Bupleurum kaoi
KW - Melanoma
KW - Nanoparticle
KW - Saikosaponin
UR - http://www.scopus.com/inward/record.url?scp=84956824930&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84956824930&partnerID=8YFLogxK
U2 - 10.1016/j.jep.2015.12.058
DO - 10.1016/j.jep.2015.12.058
M3 - Article
C2 - 26748071
AN - SCOPUS:84956824930
SN - 0378-8741
VL - 179
SP - 432
EP - 442
JO - Journal of Ethnopharmacology
JF - Journal of Ethnopharmacology
ER -