Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells

Han Chieh Ko, Yea Hwey Wang, Kuo Tong Liou, Chi Ming Chen, Chih Hsiang Chen, Wen Yen Wang, Shiou Chang, Yu Chang Hou, Kuo Tung Chen, Chieh Fu Chen, Yuh Chiang Shen

Research output: Contribution to journalArticlepeer-review

132 Citations (Scopus)

Abstract

Evodia rutaecarpa is commonly used as an anti-inflammatory drug in traditional Chinese medicine. We previously identified four bioactive compounds (dehydroevodiamine (I), evodiamine (II), rutaecarpine (III), and synephrine (IV)) from the ethanol extract of E. rutaecarpa, but their effects and mechanism(s) of action remain unclear. To study the anti-inflammatory potential and the possible underlying mechanism(s), their effects on phorbol-12-myristate-13-acetate (PMA)- and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced reactive oxygen species production in neutrophils was studied, as well as lipopolysaccharide (LPS)-induced nitric oxide (NO) production and inducible NO synthetase (iNOS) expression in microglial cells. The ethanol extract of E. rutaecarpa displayed potent antioxidative effects against both PMA- and fMLP-induced reactive oxygen species production in neutrophils (with IC50 values of around 2.7-3.3 μg/ml). Although less potent than the ethanol extract of E. rutaecarpa, compounds I-IV all concentration-dependently inhibited PMA- and fMLP-induced reactive oxygen species production, with compound IV consistently being the most potent agent among these active components. The antioxidative effects of the ethanol extract of E. rutaecarpa and these compounds were partially due to inhibition (10%-33%) of NADPH oxidase activity, a predominant reactive oxygen species-producing enzyme in neutrophils, and to a minor extent to their direct radical-scavenging properties. The ethanol extract of E. rutaecarpa also inhibited LPS-induced NO production (with an IC50 of around 0.8 μg/ml) and iNOS upregulation in microglial cells that was partially mimicked by compounds I, II, and III, but not compound IV. Our results suggest that the ethanol extract of E. rutaecarpa and its four bioactive components all exhibited anti-inflammatory activities which could be partially explained by their different potentials for inhibiting NADPH oxidase-dependent reactive oxygen species and/or iNOS-dependent NO production in activated inflammatory cells.

Original languageEnglish
Pages (from-to)211-217
Number of pages7
JournalEuropean Journal of Pharmacology
Volume555
Issue number2-3
DOIs
Publication statusPublished - Jan 26 2007

Keywords

  • Dehydroevodiamine
  • Evodia rutaecarpa
  • Evodiamine
  • Inducible NO synthetase (iNOS)
  • Inflammation
  • Microglial cell
  • Neutrophil
  • Nitric oxide (NO)
  • Reactive oxygen species

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Pharmacology

Fingerprint

Dive into the research topics of 'Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells'. Together they form a unique fingerprint.

Cite this