Abstract
Hyperuricemia is the main cause of gout and involved in the occurrence of many other diseases such as hyperlipidemia and hypertension correlated with metabolic disorders. Chrysin is a flavonoid compound found naturally in honey, propolis, and mushrooms and has anti-inflammatory and antioxidant effects. However, its mechanism of action is not clear yet. This study investigated the mechanism of chrysin’s anti-hyperuricemic effect in hyperuricemia-induced rats fed with high-fructose corn syrup. Orally administrated chrysin for 28 consecutive days effectively decreased uric acid by inhibiting the activity of xanthine oxidase (XO) in the liver. Moreover, chrysin markedly down-regulated the protein expression of uric acid transporter 1 (URAT1) and glucose transporter type 9 (GLUT9) and upregulated the protein expression of organic anion transporter 1 (OAT1) and human ATP-binding cassette subfamily G-2 (ABCG2). In addition, chrysin showed prominent anti-oxidative and inflammatory effects as the malondialdehyde (MDA) and interleukin 1 beta (IL-1β) concentration was reduced in both rat kidney and serum, which aligned with the inhibition of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway activation. Collectively, our results strongly suggest that chrysin exhibits potent anti-hyperuricemic and anti-inflammatory effects that may yield new adjuvant treatments for gout.
Original language | English |
---|---|
Article number | 564 |
Journal | Antioxidants |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2021 |
Keywords
- Chrysin
- Gout
- Hyperuricemia
- Inflammasome
- Uric acid
ASJC Scopus subject areas
- Biochemistry
- Physiology
- Molecular Biology
- Clinical Biochemistry
- Cell Biology