Analysis of the Warpage Phenomenon of Micro-Sized Parts with Precision Injection Molding by Experiment, Numerical Simulation, and Grey Theory

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

In this study, we determined the effects of design and processing parameters of precision injection molding (PIM) to minimize warpage phenomena of micro-sized parts using various plastics (polyoxymethylene (POM), acrylonitrile-butadiene-styrene (ABS), polypropylene (PP), polyamide (PA), and ABS+ polycarbonate (PC)). We applied a numerical simulation (Moldflow) to determine the runner’s balance in multi-cavities of the micro-sized part and simulate the warpage phenomenon of micro-parts with PIM. We used simulation data to fabricate a steel mold by computer numerical control (CNC) machining. In this, we study manufactured a micro-sized part and measured its warpage value using various PIM process parameters (melt temperature, mold temperature, injection pressure, and filling time). In order to obtain optimal results (i.e., minimum warpage), we employed the Taguchi method and grey theory to discern the influence of each process parameter on PIM. Finally, we determined that the most significant PIM process parameter influencing the warpage phenomenon of micro-sized parts was the mold temperature, regardless of whether in terms of the experimental results, numerical simulations, or grey theory. The PA material had the most suitable properties for application for micro-sized parts, regardless of whether in terms of experimental results, numerical simulations, or grey theory for PIM. This study also illustrates that micro-sized parts can be fabricated by PIM without the use of micro-injection molding, and we determined that the mold temperature required for molding does not need to be higher than the glass-transition temperature of the material.

Original languageEnglish
Article number1845
JournalPolymers
Volume14
Issue number9
DOIs
Publication statusPublished - May 1 2022

Keywords

  • experiment
  • grey theory
  • numerical simulation
  • optimal design and processing
  • precision injection molding
  • warpage

ASJC Scopus subject areas

  • General Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Analysis of the Warpage Phenomenon of Micro-Sized Parts with Precision Injection Molding by Experiment, Numerical Simulation, and Grey Theory'. Together they form a unique fingerprint.

Cite this