An integrin binding-defective mutant of insulin-like growth factor-1 (R36E/R37E IGF1) acts as a dominant-negative antagonist of the IGF1 receptor (IGF1R) and suppresses tumorigenesis but still binds to IGF1R

Masaaki Fujita, Katsuaki Ieguchi, Dora M. Cedano-Prieto, Andrew Fong, Charles Wilkerson, Jane Q. Chen, Mac Wu, Su Hao Lo, Anthony T.W. Cheung, MacHelle D. Wilson, Robert D. Cardiff, Alexander D. Borowsky, Yoko K. Takada, Yoshikazu Takada

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Insulin-like growth factor-1 (IGF1) is a major therapeutic target for cancer. We recently reported that IGF1 directly binds to integrins (αvβ3 and α6β4) and induces ternary complex formation (integrin-IGF1-IGF1 receptor (IGF1R)) and that the integrin binding-defective mutant of IGF1 (R36E/R37E) is defective in signaling and ternary complex formation. These findings predict that R36E/R37E competes with WT IGF1 for binding to IGF1R and inhibits IGF signaling. Here, we described that excess R36E/R37E suppressed cell viability increased by WT IGF1 in vitro in non-transformed cells. We studied the effect of R36E/R37E on viability and tumorigenesis in cancer cell lines. Wedid not detect an effect ofWTIGF1 or R36E/R37E in cancer cells under anchorage-dependent conditions. However, under anchorage-independent conditions, WT IGF1 enhanced cell viability and induced signals, whereas R36E/R37E did not. Notably, excess R36E/R37E suppressed cell viability and signaling induced byWTIGF1 under anchorage-independent conditions. Using cancer cells stably expressingWTIGF1 or R36E/R37E, we determined that R36E/R37E suppressed tumorigenesis in vivo, whereas WT IGF1 markedly enhanced it. R36E/R37E suppressed the binding ofWTIGF1 to the cell surface and the subsequent ternary complex formation induced byWTIGF1. R36E/ R37E suppressed activation of IGF1R by insulin. WT IGF1, but not R36E/R37E, induced ternary complex formation with the IGF1R/insulin receptor hybrid. These findings suggest that 1) IGF1 induces signals under anchorage-independent conditions and that 2) R36E/R37E acts as a dominant-negative inhibitor of IGF1R (IGF1 decoy). Our results are consistent with a model in which ternary complex formation is critical for IGF signaling.

Original languageEnglish
Pages (from-to)19593-19603
Number of pages11
JournalJournal of Biological Chemistry
Volume288
Issue number27
DOIs
Publication statusPublished - Jul 5 2013
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'An integrin binding-defective mutant of insulin-like growth factor-1 (R36E/R37E IGF1) acts as a dominant-negative antagonist of the IGF1 receptor (IGF1R) and suppresses tumorigenesis but still binds to IGF1R'. Together they form a unique fingerprint.

Cite this